1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Rust Bitcoin Library
// Written in 2019 by
//   The rust-bitcoin developers
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//!
//! # BIP158 Compact Block Filters for Light Clients
//!

mod bits;
use bits::{
    BitStreamReader,
    BitStreamWriter
};

use std::collections::HashSet;
use failure::Fail;
use std::{cmp, io};
use crate::hash::SipHasher;


/// Golomb encoding parameter as in BIP-158, see also https://gist.github.com/sipa/576d5f09c3b86c3b1b75598d799fc845
const P_BIP158: u8 = 19;
const M_BIP158: u64 = 784931;

/// Errors that may occur when handling Golomb Coded Sets.
#[derive(Debug, Fail)]
pub enum Error {
    /// Returned when attempting to insert an additional element into an
    /// already full Golomb Coded Set.
    #[fail(display = "Limit for the number of elements has been reached")]
    LimitReached,
    /// The Golomb-Rice encoded sequence of bits could not be decoded, returned
    /// when unpacking or calling the `contains` method on a a packed GCS.
    #[fail(display = "Decoding failed due to invalid Golomb-Rice bit sequence")]
    Decode,
    /// todo
    #[fail(display = "IO error: {}", _0)]
    Io(io::Error),
}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Self {
        Error::Io(err)
    }
}

/// fast reduction of hash to [0, nm) range
fn map_to_range(hash: u64, nm: u64) -> u64 {
    // Use this once we upgrade to rustc >= 1.26
    // ((hash as u128 * nm as u128) >> 64) as u64

    #[inline]
    fn l(n: u64) -> u64 { n & 0xffffffff }
    #[inline]
    fn h(n: u64) -> u64 { n >> 32 }

    let a = h(hash);
    let b = l(hash);
    let c = h(nm);
    let d = l(nm);

    a * c + h(a * d + c * b + h(b * d))
}


/// Golomb Coded Set Filter
struct GCSFilter {
    k0: u64, // sip hash key
    k1: u64, // sip hash key
    p: u8
}


impl GCSFilter {

    /// Create a new filter
    fn new(k0: u64, k1: u64, p: u8) -> GCSFilter {
        if p == 0 {
            panic!("p cannot be 0");
        }

        GCSFilter { k0, k1, p }
    }

    /// Golomb-Rice encode a number n to a bit stream (Parameter 2^k)
    fn golomb_rice_encode(&self, writer: &mut BitStreamWriter, n: u64) -> Result<usize, io::Error> {
        let mut wrote = 0;
        let mut q = n >> self.p;

        while q > 0 {
            let nbits = cmp::min(q, 64);
            wrote += writer.write(!0u64, nbits as u8)?;
            q -= nbits;
        }

        wrote += writer.write(0, 1)?;
        wrote += writer.write(n, self.p)?;
        Ok(wrote)
    }

    /// Golomb-Rice decode a number from a bit stream (Parameter 2^k)
    fn golomb_rice_decode(&self, reader: &mut BitStreamReader) -> Result<u64, io::Error> {
        let mut q = 0u64;
        while reader.read(1)? == 1 {
            q += 1;
        }
        let r = reader.read(self.p)?;
        return Ok((q << self.p) + r);
    }

    /// Hash an arbitrary slice with siphash using parameters of this filter
    fn hash(&self, element: &[u8]) -> u64 {
        SipHasher::hash_to_u64_with_keys(self.k0, self.k1, element)
    }
}

/// Colomb-Rice encoded filter writer
pub struct GCSFilterWriter<'a> {
    filter: GCSFilter,
    writer: &'a mut dyn io::Write,
    elements: HashSet<Vec<u8>>,
    m: u64
}


impl<'a> GCSFilterWriter<'a> {

    /// Create a new GCS writer wrapping a generic writer, with specific seed to siphash
    pub fn new(writer: &'a mut dyn io::Write, k0: u64, k1: u64, m: u64, p: u8) -> GCSFilterWriter<'a> {
        GCSFilterWriter {
            filter: GCSFilter::new(k0, k1, p),
            writer,
            elements: HashSet::new(),
            m
        }
    }

    /// Add some data to the filter
    pub fn add_element(&mut self, element: &[u8]) {
        if !element.is_empty() {
            self.elements.insert(element.to_vec());
        }
    }

    /// write the filter to the wrapped writer
    pub fn finish(&mut self) -> Result<usize, io::Error> {

        let nm = self.elements.len() as u64 * self.m;

        // map hashes to [0, n_elements * M)
        let mut mapped: Vec<_> = self.elements.iter()
            .map(|e| map_to_range(self.filter.hash(e.as_slice()), nm)).collect();
        mapped.sort();

        // write number of elements as u64
        let mut encoder = io::Cursor::new(Vec::new());
        let varint = mapped.len() as u64;
        //TODO handle unwrap with error
        crate::ser::serialize_default(&mut encoder, &varint).unwrap();

        let mut wrote = self.writer.write(encoder.into_inner().as_slice())?;

        // write out deltas of sorted values into a Golonb-Rice coded bit stream
        let mut writer = BitStreamWriter::new(self.writer);
        let mut last = 0;

        for data in mapped {
            wrote += self.filter.golomb_rice_encode(&mut writer, data - last)?;
            last = data;
        }

        wrote += writer.flush()?;
        Ok(wrote)
    }
}


/// Golomb-Rice encoded filter reader
pub struct GCSFilterReader {
    filter: GCSFilter,
    m: u64
}

impl GCSFilterReader {

    /// Create a new filter reader with specific seed to siphash
    pub fn new(k0: u64, k1: u64, m: u64, p: u8) -> GCSFilterReader {
        GCSFilterReader { filter: GCSFilter::new(k0, k1, p), m }
    }

    /// match any query pattern
    pub fn match_any(&self, reader: &mut dyn io::Read, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {

        let mut decoder = reader;
        //decode len in u64
        let n_elements: u64 = crate::ser::deserialize_default(&mut decoder).unwrap_or(0u64);

        let ref mut reader = decoder;
        // map hashes to [0, n_elements << grp]
        let nm = n_elements * self.m;
        let mut mapped = query.map(|e| map_to_range(self.filter.hash(e), nm)).collect::<Vec<_>>();
        // sort
        mapped.sort();
        if mapped.is_empty() {
            return Ok(true);
        }
        if n_elements == 0 {
            return Ok(false);
        }

        // find first match in two sorted arrays in one read pass
        let mut reader = BitStreamReader::new(reader);
        let mut data = self.filter.golomb_rice_decode(&mut reader)?;
        let mut remaining = n_elements - 1;
        for p in mapped {
            loop {
                if data == p {
                    return Ok(true);
                } else if data < p {
                    if remaining > 0 {
                        data += self.filter.golomb_rice_decode(&mut reader)?;
                        remaining -= 1;
                    } else {
                        return Ok(false);
                    }
                } else {
                    break;
                }
            }
        }
        Ok(false)
    }

    /// match all query pattern
    pub fn match_all(&self, reader: &mut dyn io::Read, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
        //read length
        let mut decoder = reader;
        let n_elements: u64 = crate::ser::deserialize_default(&mut decoder).unwrap_or(0u64);

        let ref mut reader = decoder;
        // map hashes to [0, n_elements << grp]
        let nm = n_elements * self.m;
        let mut mapped = query.map(|e| map_to_range(self.filter.hash(e), nm)).collect::<Vec<_>>();

        // sort
        mapped.sort();
        mapped.dedup();
        if mapped.is_empty() {
            return Ok(true);
        }

        if n_elements == 0 {
            return Ok(false);
        }

        // figure if all mapped are there in one read pass
        let mut reader = BitStreamReader::new(reader);
        let mut data = self.filter.golomb_rice_decode(&mut reader)?;
        let mut remaining = n_elements - 1;
        for p in mapped {
            loop {
                if data == p {
                    break;
                } else if data < p {
                    if remaining > 0 {
                        data += self.filter.golomb_rice_decode(&mut reader)?;
                        remaining -= 1;
                    } else {
                        return Ok(false);
                    }
                } else {
                    return Ok(false);
                }
            }
        }
        Ok(true)
    }
}



#[test]
fn test_filter () {
    use std::io::Cursor;
    
    let mut patterns = HashSet::new();

    patterns.insert(hex::decode("000000").unwrap());
    patterns.insert(hex::decode("111111").unwrap());
    patterns.insert(hex::decode("222222").unwrap());
    patterns.insert(hex::decode("333333").unwrap());
    patterns.insert(hex::decode("444444").unwrap());
    patterns.insert(hex::decode("555555").unwrap());
    patterns.insert(hex::decode("666666").unwrap());
    patterns.insert(hex::decode("777777").unwrap());
    patterns.insert(hex::decode("888888").unwrap());
    patterns.insert(hex::decode("999999").unwrap());
    patterns.insert(hex::decode("aaaaaa").unwrap());
    patterns.insert(hex::decode("bbbbbb").unwrap());
    patterns.insert(hex::decode("cccccc").unwrap());
    patterns.insert(hex::decode("dddddd").unwrap());
    patterns.insert(hex::decode("eeeeee").unwrap());
    patterns.insert(hex::decode("ffffff").unwrap());

    let mut out = Cursor::new(Vec::new());
    {
        let mut writer = GCSFilterWriter::new(&mut out, 0, 0, M_BIP158, P_BIP158);
        for p in &patterns {
            writer.add_element(p.as_slice());
        }

        writer.finish().unwrap();
    }

    let bytes = out.into_inner();
    {
            let mut query = Vec::new();
            query.push(hex::decode("abcdef").unwrap());
            query.push(hex::decode("eeeeee").unwrap());

            let reader = GCSFilterReader::new(0, 0, M_BIP158, P_BIP158);
            let mut input = Cursor::new(bytes.clone());
            assert!(reader.match_any(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
    }
    {
            let mut query = Vec::new();
            query.push(hex::decode("abcdef").unwrap());
            query.push(hex::decode("123456").unwrap());

            let reader = GCSFilterReader::new(0, 0, M_BIP158, P_BIP158);
            let mut input = Cursor::new(bytes.clone());
            assert!(!reader.match_any(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
    }
    {
            let reader = GCSFilterReader::new(0, 0, M_BIP158, P_BIP158);
            let mut query = Vec::new();
            for p in &patterns {
                query.push(p.clone());
            }
            let mut input = Cursor::new(bytes.clone());
            assert!(reader.match_all(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
    }

    {
        let reader = GCSFilterReader::new(0, 0, M_BIP158, P_BIP158);
        let mut query = Vec::new();
        for p in &patterns {
            query.push(p.clone());
        }

        query.push(hex::decode("abcdef").unwrap());
        let mut input = Cursor::new(bytes.clone());
        assert!(!reader.match_all(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
    }
}