1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
//! Small library for finding the modular multiplicative inverses. Also has an implementation of
//! the extended Euclidean algorithm built in.

extern crate num_integer;

use num_integer::Integer;

/// Finds the greatest common denominator of two integers *a* and *b*, and two
/// integers *x* and *y* such that *ax* + *by* is the greatest common
/// denominator of *a* and *b* (Bézout coefficients).
///
/// This function is an implementation of the [extended Euclidean
/// algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm).
///
///
/// ```
/// use modinverse::egcd;
///
/// let a = 26;
/// let b = 3;
/// let (g, x, y) = egcd(a, b);
///
/// assert_eq!(g, 1);
/// assert_eq!(x, -1);
/// assert_eq!(y, 9);
/// assert_eq!((a * x) + (b * y), g);
/// ```
pub fn egcd<T: Copy + Integer>(a: T, b: T) -> (T, T, T) {
    if a == T::zero() {
        (b, T::zero(), T::one())
    }
    else {
        let (g, x, y) = egcd(b % a, a);
        (g, y - (b / a) * x, x)
    }
}

/// Calculates the [modular multiplicative
/// inverse](https://en.wikipedia.org/wiki/Modular_multiplicative_inverse) *x*
/// of an integer *a* such that *ax* ≡ 1 (mod *m*).
///
/// Such an integer may not exist. If so, this function will return `None`.
/// Otherwise, the inverse will be returned wrapped up in a `Some`.
///
/// ```
/// use modinverse::modinverse;
///
/// let does_exist = modinverse(3, 26);
/// let does_not_exist = modinverse(4, 32);
///
/// match does_exist {
///   Some(x) => assert_eq!(x, 9),
///   None => panic!("modinverse() didn't work as expected"),
/// }
///
/// match does_not_exist {
///   Some(x) => panic!("modinverse() found an inverse when it shouldn't have"),
///   None => {},
/// }
pub fn modinverse<T: Copy + Integer>(a: T, m: T) -> Option<T> {
    let (g, x, _) = egcd(a, m);
    if g != T::one() {
        None
    }
    else {
        Some((x % m + m) % m)
    }
}