1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
//! Types for interacting with Melexis camera registers.

use core::convert::{TryFrom, TryInto};
use core::time::Duration;

use num_enum::{IntoPrimitive, TryFromPrimitive};

use crate::common::Address;
use crate::error::LibraryError;
use crate::util::is_bit_set;

/// Trait for common register functionality.
pub(crate) trait Register: Into<[u8; 2]> + for<'a> From<&'a [u8]> {
    /// A bit mask of which bits can be modified by the controller.
    ///
    /// When changing register values on the camera, the current value should be read, then
    /// bitwise-ANDed with the complement of this mask, then bitwise-ORd with the new value. This
    /// preserves the values of any reserved bits in the registers.
    fn write_mask() -> [u8; 2];

    /// The address of this register in the camera's memory map.
    fn address() -> Address;
}

/// Expose the fields of the status register (0x8000).
#[derive(Clone, Copy, Debug)]
pub struct StatusRegister(u16);

impl StatusRegister {
    // Technically it's 0x0007, but only the first bit is used.
    const SUBPAGE_MASK: u16 = 0x0001;

    const NEW_DATA_MASK: u16 = 0x0008;

    const OVERWRITE_ENABLED_MASK: u16 = 0x0010;

    const STEP_MODE_MASK: u16 = 0x0020;

    /// The subpage which was last updated by the camera. Read-only.
    pub fn last_updated_subpage(&self) -> Subpage {
        // The three LSB are for the subpage, but only the LSB is used and the other bits are
        // reserved. Safe to unwrap as the only allowed subpage values are 0 and 1, and we're
        // masking off everything except a single bit.
        Subpage::try_from_primitive((self.0 & Self::SUBPAGE_MASK) as usize).unwrap()
    }

    /// Set when there is new data available in RAM. Read-write.
    ///
    /// This flag is enabled by the camera, and can only be reset by the controller.
    pub fn new_data(&self) -> bool {
        self.0 & Self::NEW_DATA_MASK > 0
    }

    /// Reset the data available flag.
    pub fn reset_new_data(&mut self) {
        self.0 &= !Self::NEW_DATA_MASK
    }

    /// Whether data in RAM can be overwritten.
    ///
    /// See the documentation for [`ControlRegister::data_hold`] for more details on this flag.
    pub fn overwrite_enabled(&self) -> bool {
        self.0 & Self::OVERWRITE_ENABLED_MASK > 0
    }

    /// Set whether or not data in RAM can be overwritten by the camera.
    pub fn set_overwrite_enabled(&mut self, overwrite_enabled: bool) {
        if overwrite_enabled {
            self.0 |= Self::OVERWRITE_ENABLED_MASK
        } else {
            self.0 &= !Self::OVERWRITE_ENABLED_MASK
        }
    }

    /// Whether a step-mode measurement is to be started.
    ///
    /// This value must be enabled by the controller, and will then be reset by the camera once the
    /// measurement is complete. Each measurement covers one subpage, so if you want to retrieve
    /// both subpages you will need to trigger two measurements.
    /// This value is only applicable in step mode, and the documentation has been removed from
    /// more recent datasheets. See [`ControlRegister::step_mode`] for more details.
    pub fn start_measurement(&self) -> bool {
        self.0 & Self::STEP_MODE_MASK > 0
    }

    /// Signal to the camera that a step mode measurement is to be started.
    pub fn set_start_measurement(&mut self) {
        self.0 |= Self::STEP_MODE_MASK
    }
}

impl PartialEq for StatusRegister {
    /// This method only compares non-reserved bits between two registers.
    ///
    /// While step mode is no longer documented in the datasheets, it is not considered reserved
    /// for this method.
    fn eq(&self, other: &Self) -> bool {
        let mask = Self::SUBPAGE_MASK
            | Self::NEW_DATA_MASK
            | Self::OVERWRITE_ENABLED_MASK
            | Self::STEP_MODE_MASK;
        (self.0 & mask) == (other.0 & mask)
    }
}

impl Register for StatusRegister {
    fn write_mask() -> [u8; 2] {
        // The subpage bits are read-only, so they are not included in the write mask
        (Self::NEW_DATA_MASK | Self::OVERWRITE_ENABLED_MASK | Self::STEP_MODE_MASK).to_be_bytes()
    }

    fn address() -> Address {
        0x8000.into()
    }
}

impl<'a> From<&'a [u8]> for StatusRegister {
    /// Create a `StatusRegister` from the raw bytes read from the camera.
    ///
    /// This method will `panic` if there aren't enough bytes in the slice.
    fn from(buf: &'a [u8]) -> Self {
        let (int_bytes, _) = buf.split_at(core::mem::size_of::<u16>());
        let int_bytes: [u8; 2] = int_bytes
            .try_into()
            .expect("Not enough bytes in status register buffer");
        let raw = u16::from_be_bytes(int_bytes);
        Self(raw)
    }
}

impl From<StatusRegister> for [u8; 2] {
    fn from(status: StatusRegister) -> Self {
        status.0.to_be_bytes()
    }
}

/// Expose the fields of the control register (0x800D).
#[derive(Clone, Copy, Debug)]
pub struct ControlRegister(u16);

impl ControlRegister {
    const USE_SUBPAGES_MASK: u16 = 0x0001;

    const STEP_MODE_MASK: u16 = 0x0002;

    const DATA_HOLD_MASK: u16 = 0x0004;

    const SUBPAGE_REPEAT_MASK: u16 = 0x0008;

    // Technically the mask is 0x0070, but the other bits are reserved
    const SUBPAGE_MASK: u16 = 0x0010;

    const FRAME_RATE_MASK: u16 = 0x0380;

    const RESOLUTION_MASK: u16 = 0x0C00;

    const ACCESS_PATTERN_MASK: u16 = 0x1000;

    const MLX90640_DEFAULT: u16 = 0x1901;

    const MLX90641_DEFAULT: u16 = 0x0901;

    /// The default settings (as documented in the datasheet) for the MLX90640.
    pub fn default_mlx90640() -> Self {
        Self(Self::MLX90640_DEFAULT)
    }

    /// The default settings (as documented in the datasheet) for the MLX90641.
    pub fn default_mlx90641() -> Self {
        Self(Self::MLX90641_DEFAULT)
    }

    /// Check if subpages are enabled.
    ///
    /// If subpages are disabled, only one page will be updated.
    ///
    /// The default is to use subpages.
    pub fn use_subpages(&self) -> bool {
        self.0 & Self::USE_SUBPAGES_MASK > 0
    }

    /// Enable or disable the use of subpages.
    pub fn set_use_subpages(&mut self, use_subpages: bool) {
        if use_subpages {
            self.0 |= Self::USE_SUBPAGES_MASK
        } else {
            self.0 &= !Self::USE_SUBPAGES_MASK
        }
    }

    /// Check if step mode is enabled.
    ///
    /// Melexis no longer includes step mode in the documentation as the cameras are not calibrated
    /// to be run in step mode.
    ///
    /// In step mode the camera is idle until signalled with [`StatusRegister::start_measurement`],
    /// which then starts a single measurement. The default is continuous mode (i.e. step mode
    /// disabled).
    pub fn step_mode(&self) -> bool {
        self.0 & Self::STEP_MODE_MASK > 0
    }

    /// Enable or disable step mode.
    ///
    /// It is not recommended to enable step mode, see [`step_mode`][Self::step_mode] for more details.
    pub fn set_step_mode(&mut self, step_mode: bool) {
        if step_mode {
            self.0 |= Self::STEP_MODE_MASK
        } else {
            self.0 &= !Self::STEP_MODE_MASK
        }
    }

    /// Check if data holding is enabled.
    ///
    /// By default data is transferred into RAM for each frame, but if this flag is enabled data
    /// will only be written into RAM when the [`StatusRegister::overwrite_enabled`] flag is set.
    pub fn data_hold(&self) -> bool {
        self.0 & Self::DATA_HOLD_MASK > 0
    }

    /// Enable or disable data holding.
    pub fn set_data_hold(&mut self, data_hold: bool) {
        if data_hold {
            self.0 |= Self::DATA_HOLD_MASK
        } else {
            self.0 &= !Self::DATA_HOLD_MASK
        }
    }

    /// Check to see if the camera automatically alternates between subpages.
    ///
    /// This value only has an effect when [`use_subpages`][Self::use_subpages] is enabled. The
    /// default is disabled, meaning the camera automatically alternates between subpages.
    pub fn subpage_repeat(&self) -> bool {
        self.0 & Self::SUBPAGE_REPEAT_MASK > 0
    }

    /// Enable or disable subpage repetition.
    pub fn set_subpage_repeat(&mut self, subpage_repeat: bool) {
        if subpage_repeat {
            self.0 |= Self::SUBPAGE_REPEAT_MASK
        } else {
            self.0 &= !Self::SUBPAGE_REPEAT_MASK
        }
    }

    /// Check which subpage will be written to.
    ///
    /// This value only has an effect if *both* [`use_subpages`][Self::use_subpages] and
    /// [`subpage_repeat`][Self::subpage_repeat] are enabled. The default is [`0`][Subpage::Zero].
    pub fn subpage(&self) -> Subpage {
        let subpage_num = (self.0 & Self::SUBPAGE_MASK) >> (Self::SUBPAGE_MASK.trailing_zeros());
        // Safe to unwrap as only 0 and 1 are allowable values, and all but one bit are masked off
        Subpage::try_from_primitive(subpage_num as usize).unwrap()
    }

    /// Set the subpage to update.
    pub fn set_subpage(&mut self, subpage: Subpage) {
        let subpage_num = subpage as u16;
        self.0 = self.0 & !Self::SUBPAGE_MASK | (subpage_num << Self::SUBPAGE_MASK.trailing_zeros())
    }

    /// The frame rate the camera runs at.
    ///
    /// See the note on [`FrameRate`] for I²C bus clock rate requirements. The default is
    /// [2Hz][FrameRate::Two].
    pub fn frame_rate(&self) -> FrameRate {
        let raw = (self.0 & Self::FRAME_RATE_MASK) >> Self::FRAME_RATE_MASK.trailing_zeros();
        // Safe to unwrap as there are only eight values, and only three bits are unmasked
        FrameRate::from_raw(raw).unwrap()
    }

    /// Set the camera's frame rate.
    pub fn set_frame_rate(&mut self, frame_rate: FrameRate) {
        let raw = frame_rate.as_raw();
        self.0 = self.0 & !Self::FRAME_RATE_MASK | (raw << Self::FRAME_RATE_MASK.trailing_zeros())
    }

    /// The resolution to run the internal ADC at.
    ///
    /// The default is [18 bits][Resolution::Eighteen].
    pub fn resolution(&self) -> Resolution {
        let raw = (self.0 & Self::RESOLUTION_MASK) >> (Self::RESOLUTION_MASK.trailing_zeros());
        // Safe to unwrap as there are only four values, and only two bits are unmasked
        Resolution::from_raw(raw).unwrap()
    }

    /// Set the camera's resolution.
    pub fn set_resolution(&mut self, resolution: Resolution) {
        let raw = resolution.as_raw();
        self.0 = self.0 & !Self::RESOLUTION_MASK | (raw << Self::RESOLUTION_MASK.trailing_zeros())
    }

    /// The [access pattern][AccessPattern] used by the camera.
    ///
    /// The default for the MLX90640 is the [chess pattern][AccessPattern::Chess] mode, while the
    /// default for the MLX90641 is [interleaved][AccessPattern::Interleave].
    pub fn access_pattern(&self) -> AccessPattern {
        let raw =
            (self.0 & Self::ACCESS_PATTERN_MASK) >> (Self::ACCESS_PATTERN_MASK.trailing_zeros());
        // Safe to unwrap as only 0 and 1 are allowable values, and all but one bit are masked off
        AccessPattern::try_from_primitive(raw as u8).unwrap()
    }

    /// Set the access pattern to use.
    pub fn set_access_pattern(&mut self, access_pattern: AccessPattern) {
        let raw = access_pattern as u8;
        self.0 = self.0 & !Self::ACCESS_PATTERN_MASK
            | ((raw as u16) << Self::ACCESS_PATTERN_MASK.trailing_zeros())
    }
}

impl PartialEq for ControlRegister {
    fn eq(&self, other: &Self) -> bool {
        let mask = Self::USE_SUBPAGES_MASK
            | Self::STEP_MODE_MASK
            | Self::DATA_HOLD_MASK
            | Self::SUBPAGE_REPEAT_MASK
            | Self::SUBPAGE_MASK
            | Self::FRAME_RATE_MASK
            | Self::RESOLUTION_MASK
            | Self::ACCESS_PATTERN_MASK;
        (self.0 & mask) == (other.0 & mask)
    }
}

impl Register for ControlRegister {
    fn write_mask() -> [u8; 2] {
        [0x1F, 0xFF]
    }

    fn address() -> Address {
        0x800D.into()
    }
}

impl<'a> From<&'a [u8]> for ControlRegister {
    fn from(buf: &'a [u8]) -> Self {
        let (int_bytes, _) = buf.split_at(core::mem::size_of::<u16>());
        let int_bytes: [u8; 2] = int_bytes
            .try_into()
            .expect("Not enough bytes in control register buffer");
        let raw = u16::from_be_bytes(int_bytes);
        Self(raw)
    }
}

impl From<ControlRegister> for [u8; 2] {
    fn from(register: ControlRegister) -> Self {
        register.0.to_be_bytes()
    }
}

/// Represents the possible states of the I²C configuration register (0x800F).
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct I2cRegister {
    fast_mode_plus: bool,

    i2c_threshold_halved: bool,

    sda_current_limiter: bool,
}

impl I2cRegister {
    /// Check if I²C Fast Mode+ enabled.
    ///
    /// Defaults to enabled.
    pub fn fast_mode_plus(&self) -> bool {
        self.fast_mode_plus
    }

    /// Enable or disable I²C Fast Mode+.
    pub fn set_fast_mode_plus(&mut self, fast_mode_plus: bool) {
        self.fast_mode_plus = fast_mode_plus;
    }

    /// Check if the I²C threshold level is halved.
    ///
    /// The default is disabled.
    pub fn i2c_threshold_halved(&self) -> bool {
        self.i2c_threshold_halved
    }

    /// Enable or disable halving the I²C threshold level.
    pub fn set_i2c_threshold_halved(&mut self, i2c_threshold_halved: bool) {
        self.i2c_threshold_halved = i2c_threshold_halved;
    }

    /// Check if the I²C current limit is enabled.
    ///
    /// The defualt is enabled.
    pub fn sda_current_limiter(&self) -> bool {
        self.sda_current_limiter
    }

    /// Enable or disable the I²C current limiter.
    pub fn set_sda_current_limiter(&mut self, sda_current_limiter: bool) {
        self.sda_current_limiter = sda_current_limiter;
    }
}

impl Default for I2cRegister {
    fn default() -> Self {
        Self {
            fast_mode_plus: true,
            i2c_threshold_halved: false,
            sda_current_limiter: true,
        }
    }
}

impl Register for I2cRegister {
    fn write_mask() -> [u8; 2] {
        // the fourth bit is documented, but it is "reserved" at 0. It *isn't* documented to always
        // be 0 though, so I'm not including it in the mask.
        [0x00, 0x07]
    }

    fn address() -> Address {
        0x800F.into()
    }
}

impl<'a> From<&'a [u8]> for I2cRegister {
    fn from(buf: &'a [u8]) -> Self {
        let (int_bytes, _) = buf.split_at(core::mem::size_of::<u16>());
        let int_bytes: [u8; 2] = int_bytes
            .try_into()
            .expect("Not enough bytes in status register buffer");
        let raw = u16::from_be_bytes(int_bytes);
        // I'm inverting the fast mode plus flag for usage in this library. 0 should always be
        // "disabled", not "not disabled".
        let fast_mode_plus = !is_bit_set(raw, 0);
        let i2c_threshold_halved = is_bit_set(raw, 1);
        // Like fast_mode_plus, I'm rephrasing this flag to be the opposite
        let sda_current_limiter = !is_bit_set(raw, 2);
        Self {
            fast_mode_plus,
            i2c_threshold_halved,
            sda_current_limiter,
        }
    }
}

impl From<I2cRegister> for [u8; 2] {
    fn from(register: I2cRegister) -> Self {
        let mut raw = 0u16;
        // And here we translate back to "not disabled" land.
        if !register.fast_mode_plus {
            raw |= 0x0001;
        }
        if register.i2c_threshold_halved {
            raw |= 0x0002;
        }
        // And the other "not disabled" bit.
        if !register.sda_current_limiter {
            raw |= 0x0004;
        }
        raw.to_be_bytes()
    }
}

/// Identify which subpage to access.
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord, IntoPrimitive, TryFromPrimitive)]
#[repr(usize)]
pub enum Subpage {
    Zero = 0,
    One = 1,
}

/// The frame rates the cameras are able to run at.
///
/// Before using the higher refresh rates, ensure your I²C bus is fast enough. Because the image is
/// smaller (and it has a more efficient access pattern) the MLX90641 can use the faster frame
/// rates with slower I²C bus speeds. With the read patterns used by the included [`MelexisCamera`
/// implementations], here are the maximum frame rates for common different bus speeds.
///
/// | Bus Speed | MLX90640 ([Chess]) | MLX 90640 ([Interleaved]) | MLX90641 |
/// | --- | --- | --- | --- |
/// | 100kHz |  4Hz |  8Hz | 16Hz |
/// | 400kHz | 16Hz | 32Hz | 64Hz |
/// |   1MHz | 64Hz (barely, 32Hz is more realistic) | 32Hz | 64Hz |
///
/// On top of the bus speed, your hardware also has to be able to process each frame before the
/// next frame is ready. As a final warning, the EEPROM cannot be accessed above 400kHz so if
/// you're using a 1MHz bus speed you will need to read the calibration data at 400kHz then
/// increase the bus speed afterwards.
///
/// [`MelexisCamera` implementations]: crate::common::MelexisCamera::pixel_ranges
/// [Chess]: AccessPattern::Chess
/// [Interleaved]: AccessPattern::Interleave
///
/// # Usage
///
/// Besides accessing the enum variants directly, standard conversion traits are provided for both
/// `f32`, `u8`, and `core::time::Duration`.
///
/// ```rust
/// # use mlx9064x::register::FrameRate;
/// use core::convert::TryInto;
/// use core::time::Duration;
///
/// assert_eq!(Duration::from_secs(2), FrameRate::Half.into());
/// assert_eq!(8.try_into(), Ok(FrameRate::Eight));
/// assert_eq!(0.5f32.try_into(), Ok(FrameRate::Half));
/// assert_eq!(0.5f32, FrameRate::Half.into());
/// ```
// NOTE: For the maximum frame rates, see "mlx9064x_timing.ods" in the repo for the calculations.
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub enum FrameRate {
    /// 0.5 Hz, one frame every two seconds.
    Half,

    /// 1Hz.
    One,

    /// 2Hz, which is also the default for the MLX90640 and MLX90641.
    Two,

    /// 4Hz.
    Four,

    /// 8Hz.
    Eight,

    /// 16 Hz.
    Sixteen,

    /// 32Hz.
    ThirtyTwo,

    /// 64Hz.
    SixtyFour,
}

impl FrameRate {
    /// Attempt to create a `FrameRate` from a raw value from the camera.
    pub(crate) fn from_raw(raw_value: u16) -> Result<Self, LibraryError> {
        match raw_value {
            0 => Ok(Self::Half),
            1 => Ok(Self::One),
            2 => Ok(Self::Two),
            3 => Ok(Self::Four),
            4 => Ok(Self::Eight),
            5 => Ok(Self::Sixteen),
            6 => Ok(Self::ThirtyTwo),
            7 => Ok(Self::SixtyFour),
            _ => Err(LibraryError::InvalidData("Invalid frame rate given")),
        }
    }

    /// Map a frame rate variant into the representation used by the camera.
    pub(crate) fn as_raw(&self) -> u16 {
        match self {
            Self::Half => 0,
            Self::One => 1,
            Self::Two => 2,
            Self::Four => 3,
            Self::Eight => 4,
            Self::Sixteen => 5,
            Self::ThirtyTwo => 6,
            Self::SixtyFour => 7,
        }
    }
}

impl Default for FrameRate {
    fn default() -> Self {
        Self::Two
    }
}

impl TryFrom<f32> for FrameRate {
    type Error = LibraryError;

    /// Attempt to create a `FrameRate` from a number.
    ///
    /// This will only work if the source number *exactly* matches one of the values named as a
    /// variant.
    /// ```
    /// # use core::convert::TryFrom;
    /// # use mlx9064x::FrameRate;
    /// assert_eq!(FrameRate::try_from(0.5), Ok(FrameRate::Half));
    /// let almost_half = 0.50001;
    /// assert!(FrameRate::try_from(almost_half).is_err());
    /// ```
    #[allow(clippy::float_cmp)]
    fn try_from(value: f32) -> Result<Self, Self::Error> {
        if value == 0.5 {
            Ok(Self::Half)
        } else if value == 1.0 {
            Ok(Self::One)
        } else if value == 2.0 {
            Ok(Self::Two)
        } else if value == 4.0 {
            Ok(Self::Four)
        } else if value == 8.0 {
            Ok(Self::Eight)
        } else if value == 16.0 {
            Ok(Self::Sixteen)
        } else if value == 32.0 {
            Ok(Self::ThirtyTwo)
        } else if value == 64.0 {
            Ok(Self::SixtyFour)
        } else {
            Err(LibraryError::InvalidData(
                "The given number does not match a valid frame rate",
            ))
        }
    }
}

impl TryFrom<u8> for FrameRate {
    type Error = LibraryError;

    fn try_from(value: u8) -> Result<Self, Self::Error> {
        // No way to say 0.5, so skipping it
        match value {
            1 => Ok(Self::One),
            2 => Ok(Self::Two),
            4 => Ok(Self::Four),
            8 => Ok(Self::Eight),
            16 => Ok(Self::Sixteen),
            32 => Ok(Self::ThirtyTwo),
            64 => Ok(Self::SixtyFour),
            _ => Err(LibraryError::InvalidData(
                "The given number does not match a valid frame rate",
            )),
        }
    }
}

impl From<FrameRate> for f32 {
    fn from(frame_rate: FrameRate) -> Self {
        match frame_rate {
            FrameRate::Half => 0.5,
            FrameRate::One => 1f32,
            FrameRate::Two => 2f32,
            FrameRate::Four => 4f32,
            FrameRate::Eight => 8f32,
            FrameRate::Sixteen => 16f32,
            FrameRate::ThirtyTwo => 32f32,
            FrameRate::SixtyFour => 64f32,
        }
    }
}

impl From<FrameRate> for Duration {
    /// Convert a frame rate into the per-frame duration.
    fn from(frame_rate: FrameRate) -> Self {
        let frequency: f32 = frame_rate.into();
        Duration::from_secs_f32(frequency.recip())
    }
}

/// The resolution of the internal [ADC][adc].
///
/// [adc]: https://en.wikipedia.org/wiki/Analog-to-digital_converter
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
#[repr(u8)]
pub enum Resolution {
    /// 16-bit.
    Sixteen,

    /// 17-bit.
    Seventeen,

    /// 18-bit, which is also the default for both the MLX90640 and MLX90641.
    Eighteen,

    /// 19-bit.
    Nineteen,
}

impl Resolution {
    /// Attempt to create a `FrameRate` from a raw value from the camera.
    pub(crate) fn from_raw(raw_value: u16) -> Result<Self, LibraryError> {
        match raw_value {
            0 => Ok(Self::Sixteen),
            1 => Ok(Self::Seventeen),
            2 => Ok(Self::Eighteen),
            3 => Ok(Self::Nineteen),
            _ => Err(LibraryError::InvalidData(
                "Invalid raw resolution value given",
            )),
        }
    }

    /// Map a frame rate variant into the representation used by the camera.
    pub(crate) fn as_raw(&self) -> u16 {
        match self {
            Self::Sixteen => 0,
            Self::Seventeen => 1,
            Self::Eighteen => 2,
            Self::Nineteen => 3,
        }
    }
}

impl TryFrom<u8> for Resolution {
    type Error = LibraryError;

    fn try_from(value: u8) -> Result<Self, Self::Error> {
        match value {
            16 => Ok(Self::Sixteen),
            17 => Ok(Self::Seventeen),
            18 => Ok(Self::Eighteen),
            19 => Ok(Self::Nineteen),
            _ => Err(LibraryError::InvalidData(
                "The given value did not match a valid ADC resolution",
            )),
        }
    }
}

impl From<Resolution> for u8 {
    fn from(resolution: Resolution) -> Self {
        match resolution {
            Resolution::Sixteen => 16,
            Resolution::Seventeen => 17,
            Resolution::Eighteen => 18,
            Resolution::Nineteen => 19,
        }
    }
}

impl Default for Resolution {
    fn default() -> Self {
        Self::Eighteen
    }
}

/// The pixel access pattern used by a camera.
///
/// In chess board mode, the pixels alternate subpages in both the X and
/// Y axes, resulting in a chess or checker board-like pattern:
/// ```text
/// 0 1 0 1 0 1 0 1
/// 1 0 1 0 1 0 1 0
/// 0 1 0 1 0 1 0 1
/// 1 0 1 0 1 0 1 0
/// ```
/// The other access mode interleaves each row, so pixels will alternate subpages only on the Y
/// axis. This is also referred to as "TV" mode in the manufacturer's datasheet.
/// ```text
/// 0 0 0 0 0 0 0 0
/// 1 1 1 1 1 1 1 1
/// 0 0 0 0 0 0 0 0
/// 1 1 1 1 1 1 1 1
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord, IntoPrimitive, TryFromPrimitive)]
#[repr(u8)]
pub enum AccessPattern {
    /// Pixels alternate between subpages, resulting in a chess or checker board pattern.
    ///
    /// This is the default (and strongly recommended value) for the MLX90640.
    ///
    /// The MLX90641 updates the entire frame at once with only the read location being alternated.
    /// This means that chess mode has no benefit for the MLX90641, and this library doesn't
    /// support it.
    Chess = 1,

    /// Each row of pixels is in the same subpage, with the rows alternating between subpages.
    ///
    /// This is the default mode for the MLX90641.
    Interleave = 0,
}

#[cfg(test)]
mod test {
    use super::*;

    macro_rules! assert_register_field {
        ($register:ty, $value:literal, $field:ident, $expected:expr) => {
            // backdoor type annotation for the macro
            let value: u16 = $value;
            let bytes = value.to_be_bytes();
            let packed: $register = From::from(&bytes[..]);
            // Allow bool comparisions as this is a generic macro
            #[allow(clippy::bool_assert_comparison)]
            {
                assert_eq!(packed.$field(), $expected);
            }
            let unpacked: [u8; 2] = packed.into();
            assert_eq!(unpacked, bytes);
        };
    }

    #[test]
    fn status_register_masked() {
        // The write mask is not quite a mask for all relevant bits for the status register: the
        // last updated subpage is a read-only field, so the three least significant bits aren't in
        // the write mask.
        let bytes = [0xFF, 0xF8];
        let all_on = StatusRegister::from(&bytes[..]);
        let mask_bytes = StatusRegister::write_mask();
        let masked_on: StatusRegister = StatusRegister::from(&mask_bytes[..]);
        assert_eq!(all_on, masked_on);
    }

    #[test]
    fn status_register_last_updated_subpage() {
        assert_register_field!(StatusRegister, 0x0001, last_updated_subpage, Subpage::One);
        assert_register_field!(StatusRegister, 0x0000, last_updated_subpage, Subpage::Zero);
    }

    #[test]
    fn status_register_new_data() {
        assert_register_field!(StatusRegister, 0x0008, new_data, true);
        assert_register_field!(StatusRegister, 0x0000, new_data, false);
        // Testing each subpage individually to ensure the current subpage is preserved when
        // resetting the data ready flag.
        // Subpage 0
        let mut subpage0_ready: StatusRegister = (&[0x00, 0x08][..]).into();
        assert_eq!(subpage0_ready.last_updated_subpage(), Subpage::Zero);
        assert!(subpage0_ready.new_data());
        subpage0_ready.reset_new_data();
        assert!(!subpage0_ready.new_data());
        let subpage0_bytes: [u8; 2] = subpage0_ready.into();
        assert_eq!(subpage0_bytes, [0x00, 0x00]);
        // Subpage 1
        let mut subpage1_ready: StatusRegister = (&[0x00, 0x09][..]).into();
        assert_eq!(subpage1_ready.last_updated_subpage(), Subpage::One);
        assert!(subpage1_ready.new_data());
        subpage1_ready.reset_new_data();
        assert!(!subpage1_ready.new_data());
        let subpage1_bytes: [u8; 2] = subpage1_ready.into();
        assert_eq!(subpage1_bytes, [0x00, 0x01]);
    }

    #[test]
    fn status_register_overwrite() {
        assert_register_field!(StatusRegister, 0x0010, overwrite_enabled, true);
        assert_register_field!(StatusRegister, 0x0000, overwrite_enabled, false);
        let mut status_register: StatusRegister = (&[0x00, 0x00][..]).into();
        assert!(!status_register.overwrite_enabled());
        status_register.set_overwrite_enabled(true);
        assert!(status_register.overwrite_enabled());
        status_register.set_overwrite_enabled(false);
        assert!(!status_register.overwrite_enabled());
    }

    #[test]
    fn status_register_start_measurement() {
        assert_register_field!(StatusRegister, 0x0020, start_measurement, true);
        assert_register_field!(StatusRegister, 0x0000, start_measurement, false);
        let mut status_register: StatusRegister = (&[0x00, 0x00][..]).into();
        assert!(!status_register.start_measurement());
        status_register.set_start_measurement();
        assert!(status_register.start_measurement());
    }

    #[test]
    fn control_register_masked() {
        let bytes: [u8; 2] = [0xFF, 0xFF];
        let all_on = ControlRegister::from(&bytes[..]);
        // The write mask is also a mask for which bits are relevant to the structure.
        let mask_bytes = ControlRegister::write_mask();
        let masked_on = ControlRegister::from(&mask_bytes[..]);
        assert_eq!(all_on, masked_on);
    }

    #[test]
    fn control_register_use_subpages() {
        assert_register_field!(ControlRegister, 0x0001, use_subpages, true);
        assert_register_field!(ControlRegister, 0x0000, use_subpages, false);
        let mut control_register = ControlRegister::default_mlx90640();
        assert!(control_register.use_subpages());
        control_register.set_use_subpages(false);
        assert!(!control_register.use_subpages());
        control_register.set_use_subpages(true);
        assert!(control_register.use_subpages());
    }

    #[test]
    fn control_register_step_mode() {
        assert_register_field!(ControlRegister, 0x0002, step_mode, true);
        assert_register_field!(ControlRegister, 0x0000, step_mode, false);
        let mut control_register = ControlRegister::default_mlx90640();
        assert!(!control_register.step_mode());
        control_register.set_step_mode(true);
        assert!(control_register.step_mode());
        control_register.set_step_mode(false);
        assert!(!control_register.step_mode());
    }

    #[test]
    fn control_register_data_hold() {
        assert_register_field!(ControlRegister, 0x0004, data_hold, true);
        assert_register_field!(ControlRegister, 0x0000, data_hold, false);
        let mut control_register = ControlRegister::default_mlx90640();
        assert!(!control_register.data_hold());
        control_register.set_data_hold(true);
        assert!(control_register.data_hold());
        control_register.set_data_hold(false);
        assert!(!control_register.data_hold());
    }

    #[test]
    fn control_register_subpage_repeat() {
        assert_register_field!(ControlRegister, 0x0008, subpage_repeat, true);
        assert_register_field!(ControlRegister, 0x0000, subpage_repeat, false);
        let mut control_register = ControlRegister::default_mlx90640();
        assert!(!control_register.subpage_repeat());
        control_register.set_subpage_repeat(true);
        assert!(control_register.subpage_repeat());
        control_register.set_subpage_repeat(false);
        assert!(!control_register.subpage_repeat());
    }

    #[test]
    fn control_register_subpage() {
        assert_register_field!(ControlRegister, 0x0000, subpage, Subpage::Zero);
        assert_register_field!(ControlRegister, 0x0010, subpage, Subpage::One);
        let mut control_register = ControlRegister::default_mlx90640();
        assert_eq!(control_register.subpage(), Subpage::Zero);
        control_register.set_subpage(Subpage::One);
        assert_eq!(control_register.subpage(), Subpage::One);
        control_register.set_subpage(Subpage::Zero);
        assert_eq!(control_register.subpage(), Subpage::Zero);
    }

    #[test]
    fn control_register_frame_rate() {
        assert_register_field!(ControlRegister, 0x0000, frame_rate, FrameRate::Half);
        assert_register_field!(ControlRegister, 0x0080, frame_rate, FrameRate::One);
        assert_register_field!(ControlRegister, 0x0100, frame_rate, FrameRate::Two);
        assert_register_field!(ControlRegister, 0x0180, frame_rate, FrameRate::Four);
        assert_register_field!(ControlRegister, 0x0200, frame_rate, FrameRate::Eight);
        assert_register_field!(ControlRegister, 0x0280, frame_rate, FrameRate::Sixteen);
        assert_register_field!(ControlRegister, 0x0300, frame_rate, FrameRate::ThirtyTwo);
        assert_register_field!(ControlRegister, 0x0380, frame_rate, FrameRate::SixtyFour);
        let mut control_register = ControlRegister::default_mlx90640();
        assert_eq!(control_register.frame_rate(), FrameRate::Two);
        control_register.set_frame_rate(FrameRate::Half);
        assert_eq!(control_register.frame_rate(), FrameRate::Half);
        control_register.set_frame_rate(FrameRate::One);
        assert_eq!(control_register.frame_rate(), FrameRate::One);
        control_register.set_frame_rate(FrameRate::Two);
        assert_eq!(control_register.frame_rate(), FrameRate::Two);
        control_register.set_frame_rate(FrameRate::Four);
        assert_eq!(control_register.frame_rate(), FrameRate::Four);
        control_register.set_frame_rate(FrameRate::Eight);
        assert_eq!(control_register.frame_rate(), FrameRate::Eight);
        control_register.set_frame_rate(FrameRate::Sixteen);
        assert_eq!(control_register.frame_rate(), FrameRate::Sixteen);
        control_register.set_frame_rate(FrameRate::ThirtyTwo);
        assert_eq!(control_register.frame_rate(), FrameRate::ThirtyTwo);
        control_register.set_frame_rate(FrameRate::SixtyFour);
        assert_eq!(control_register.frame_rate(), FrameRate::SixtyFour);
    }

    #[test]
    fn control_register_resolution() {
        assert_register_field!(ControlRegister, 0x0000, resolution, Resolution::Sixteen);
        assert_register_field!(ControlRegister, 0x0400, resolution, Resolution::Seventeen);
        assert_register_field!(ControlRegister, 0x0800, resolution, Resolution::Eighteen);
        assert_register_field!(ControlRegister, 0x0C00, resolution, Resolution::Nineteen);
        let mut control_register = ControlRegister::default_mlx90640();
        assert_eq!(control_register.resolution(), Resolution::Eighteen);
        control_register.set_resolution(Resolution::Sixteen);
        assert_eq!(control_register.resolution(), Resolution::Sixteen);
        control_register.set_resolution(Resolution::Seventeen);
        assert_eq!(control_register.resolution(), Resolution::Seventeen);
        control_register.set_resolution(Resolution::Eighteen);
        assert_eq!(control_register.resolution(), Resolution::Eighteen);
        control_register.set_resolution(Resolution::Nineteen);
        assert_eq!(control_register.resolution(), Resolution::Nineteen);
    }

    #[test]
    fn control_register_access_mode() {
        assert_register_field!(
            ControlRegister,
            0x0000,
            access_pattern,
            AccessPattern::Interleave
        );
        assert_register_field!(
            ControlRegister,
            0x1000,
            access_pattern,
            AccessPattern::Chess
        );
        let mut control_register = ControlRegister::default_mlx90640();
        assert_eq!(control_register.access_pattern(), AccessPattern::Chess);
        control_register.set_access_pattern(AccessPattern::Interleave);
        assert_eq!(control_register.access_pattern(), AccessPattern::Interleave);
        // Also check the MLX90641 default
        assert_eq!(
            ControlRegister::default_mlx90641().access_pattern(),
            AccessPattern::Interleave
        );
    }

    #[test]
    fn i2c_register_fast_mode_plus() {
        // "not disabled"
        assert_register_field!(I2cRegister, 0x0000, fast_mode_plus, true);
        assert_register_field!(I2cRegister, 0x0001, fast_mode_plus, false);
        let mut i2c_register = I2cRegister::default();
        assert!(i2c_register.fast_mode_plus());
        i2c_register.set_fast_mode_plus(false);
        assert!(!i2c_register.fast_mode_plus());
        i2c_register.set_fast_mode_plus(true);
        assert!(i2c_register.fast_mode_plus());
    }

    #[test]
    fn i2c_register_threshold() {
        assert_register_field!(I2cRegister, 0x0000, i2c_threshold_halved, false);
        assert_register_field!(I2cRegister, 0x0002, i2c_threshold_halved, true);
        let mut i2c_register = I2cRegister::default();
        assert!(!i2c_register.i2c_threshold_halved());
        i2c_register.set_i2c_threshold_halved(true);
        assert!(i2c_register.i2c_threshold_halved());
        i2c_register.set_i2c_threshold_halved(false);
        assert!(!i2c_register.i2c_threshold_halved());
    }

    #[test]
    fn i2c_register_current_limiter() {
        // the other "not disabled" flag
        assert_register_field!(I2cRegister, 0x0000, sda_current_limiter, true);
        assert_register_field!(I2cRegister, 0x0004, sda_current_limiter, false);
        let mut i2c_register = I2cRegister::default();
        assert!(i2c_register.sda_current_limiter());
        i2c_register.set_sda_current_limiter(false);
        assert!(!i2c_register.sda_current_limiter());
        i2c_register.set_sda_current_limiter(true);
        assert!(i2c_register.sda_current_limiter());
    }

    #[test]
    fn frame_rate_from_raw() {
        assert_eq!(FrameRate::from_raw(0).unwrap(), FrameRate::Half);
        assert_eq!(FrameRate::from_raw(1).unwrap(), FrameRate::One);
        assert_eq!(FrameRate::from_raw(2).unwrap(), FrameRate::Two);
        assert_eq!(FrameRate::from_raw(3).unwrap(), FrameRate::Four);
        assert_eq!(FrameRate::from_raw(4).unwrap(), FrameRate::Eight);
        assert_eq!(FrameRate::from_raw(5).unwrap(), FrameRate::Sixteen);
        assert_eq!(FrameRate::from_raw(6).unwrap(), FrameRate::ThirtyTwo);
        assert_eq!(FrameRate::from_raw(7).unwrap(), FrameRate::SixtyFour);
        assert!(FrameRate::from_raw(8).is_err());
    }

    #[test]
    fn frame_rate_as_raw() {
        assert_eq!(FrameRate::Half.as_raw(), 0);
        assert_eq!(FrameRate::One.as_raw(), 1);
        assert_eq!(FrameRate::Two.as_raw(), 2);
        assert_eq!(FrameRate::Four.as_raw(), 3);
        assert_eq!(FrameRate::Eight.as_raw(), 4);
        assert_eq!(FrameRate::Sixteen.as_raw(), 5);
        assert_eq!(FrameRate::ThirtyTwo.as_raw(), 6);
        assert_eq!(FrameRate::SixtyFour.as_raw(), 7);
    }

    #[test]
    fn frame_rate_from_f32() {
        assert_eq!(FrameRate::try_from(0.5f32).unwrap(), FrameRate::Half);
        assert_eq!(FrameRate::try_from(1f32).unwrap(), FrameRate::One);
        assert_eq!(FrameRate::try_from(2f32).unwrap(), FrameRate::Two);
        assert_eq!(FrameRate::try_from(4f32).unwrap(), FrameRate::Four);
        assert_eq!(FrameRate::try_from(8f32).unwrap(), FrameRate::Eight);
        assert_eq!(FrameRate::try_from(16f32).unwrap(), FrameRate::Sixteen);
        assert_eq!(FrameRate::try_from(32f32).unwrap(), FrameRate::ThirtyTwo);
        assert_eq!(FrameRate::try_from(64f32).unwrap(), FrameRate::SixtyFour);
        // Don't try to add more zeros into the next test; too many more and it gets truncated.
        assert!(FrameRate::try_from(0.5000001f32).is_err());
    }

    #[test]
    fn frame_rate_from_u8() {
        // No fractions in integer-land
        assert_eq!(FrameRate::try_from(1u8).unwrap(), FrameRate::One);
        assert_eq!(FrameRate::try_from(2u8).unwrap(), FrameRate::Two);
        assert_eq!(FrameRate::try_from(4u8).unwrap(), FrameRate::Four);
        assert_eq!(FrameRate::try_from(8u8).unwrap(), FrameRate::Eight);
        assert_eq!(FrameRate::try_from(16u8).unwrap(), FrameRate::Sixteen);
        assert_eq!(FrameRate::try_from(32u8).unwrap(), FrameRate::ThirtyTwo);
        assert_eq!(FrameRate::try_from(64u8).unwrap(), FrameRate::SixtyFour);
        assert!(FrameRate::try_from(u8::MAX).is_err());
    }

    #[test]
    fn frame_rate_to_f32() {
        assert_eq!(f32::from(FrameRate::Half), 0.5);
        assert_eq!(f32::from(FrameRate::One), 1f32);
        assert_eq!(f32::from(FrameRate::Two), 2f32);
        assert_eq!(f32::from(FrameRate::Four), 4f32);
        assert_eq!(f32::from(FrameRate::Eight), 8f32);
        assert_eq!(f32::from(FrameRate::Sixteen), 16f32);
        assert_eq!(f32::from(FrameRate::ThirtyTwo), 32f32);
        assert_eq!(f32::from(FrameRate::SixtyFour), 64f32);
    }

    #[test]
    fn default_frame_rate() {
        assert_eq!(FrameRate::default(), FrameRate::Two)
    }
    #[test]
    fn resolution_from_raw() {
        assert_eq!(Resolution::from_raw(0).unwrap(), Resolution::Sixteen);
        assert_eq!(Resolution::from_raw(1).unwrap(), Resolution::Seventeen);
        assert_eq!(Resolution::from_raw(2).unwrap(), Resolution::Eighteen);
        assert_eq!(Resolution::from_raw(3).unwrap(), Resolution::Nineteen);
        assert!(Resolution::from_raw(4).is_err());
    }

    #[test]
    fn resolution_as_raw() {
        assert_eq!(Resolution::Sixteen.as_raw(), 0);
        assert_eq!(Resolution::Seventeen.as_raw(), 1);
        assert_eq!(Resolution::Eighteen.as_raw(), 2);
        assert_eq!(Resolution::Nineteen.as_raw(), 3);
    }

    #[test]
    fn resolution_from_u8() {
        assert_eq!(Resolution::try_from(16u8).unwrap(), Resolution::Sixteen);
        assert_eq!(Resolution::try_from(17u8).unwrap(), Resolution::Seventeen);
        assert_eq!(Resolution::try_from(18u8).unwrap(), Resolution::Eighteen);
        assert_eq!(Resolution::try_from(19u8).unwrap(), Resolution::Nineteen);
        assert!(Resolution::try_from(1u8).is_err());
    }

    #[test]
    fn resolution_to_u8() {
        assert_eq!(u8::from(Resolution::Sixteen), 16);
        assert_eq!(u8::from(Resolution::Seventeen), 17);
        assert_eq!(u8::from(Resolution::Eighteen), 18);
        assert_eq!(u8::from(Resolution::Nineteen), 19);
    }

    #[test]
    fn default_resolution() {
        assert_eq!(Resolution::default(), Resolution::Eighteen);
    }
}