1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
use std::cell::UnsafeCell;
use std::io;
use std::mem;
use std::os::windows::prelude::*;
use std::sync::{Arc, Mutex};
use std::collections::hash_map::{Entry, HashMap};

use slab::Index;
use winapi::*;
use miow;
use miow::iocp::{CompletionPort, CompletionStatus};

use {Token, PollOpt};
use event::{IoEvent, EventSet};
use sys::windows::from_raw_arc::FromRawArc;
use sys::windows::buffer_pool::BufferPool;

/// The guts of the Windows event loop, this is the struct which actually owns
/// a completion port.
///
/// Internally this is just an `Arc`, and this allows handing out references to
/// the internals to I/O handles registered on this selector. This is
/// required to schedule I/O operations independently of being inside the event
/// loop (e.g. when a call to `write` is seen we're not "in the event loop").
pub struct Selector {
    inner: Arc<SelectorInner>,
}

struct SelectorInner {
    /// The actual completion port that's used to manage all I/O
    port: CompletionPort,

    /// A list of deferred events to be generated on the next call to `select`.
    ///
    /// Events can sometimes be generated without an associated I/O operation
    /// having completed, and this list is emptied out and returned on each turn
    /// of the event loop.
    defers: Mutex<Vec<IoEvent>>,

    /// A pool of buffers usable by this selector.
    ///
    /// Primitives will take buffers from this pool to perform I/O operations,
    /// and once complete they'll be put back in.
    buffers: Mutex<BufferPool>,

    /// A list of registered level triggered `IoEvent`s
    level_triggered: Mutex<HashMap<usize, IoEvent>>,
}

impl Selector {
    pub fn new() -> io::Result<Selector> {
        CompletionPort::new(1).map(|cp| {
            Selector {
                inner: Arc::new(SelectorInner {
                    port: cp,
                    defers: Mutex::new(Vec::new()),
                    buffers: Mutex::new(BufferPool::new(256)),
                    level_triggered: Mutex::new(HashMap::new()),
                }),
            }
        })
    }

    pub fn select(&mut self,
                  events: &mut Events,
                  timeout_ms: Option<usize>) -> io::Result<()> {
        // If we have some deferred events then we only want to poll for I/O
        // events, so clamp the timeout to 0 in that case.
        let timeout = if !self.should_block() {
            Some(0)
        } else {
            timeout_ms.map(|ms| ms as u32)
        };

        // Clear out the previous list of I/O events and get some more!
        events.events.truncate(0);
        let inner = self.inner.clone();
        let n = match inner.port.get_many(&mut events.statuses, timeout) {
            Ok(statuses) => statuses.len(),
            Err(ref e) if e.raw_os_error() == Some(WAIT_TIMEOUT as i32) => 0,
            Err(e) => return Err(e),
        };

        // First up, process all completed I/O events. Lookup the callback
        // associated with the I/O and invoke it. Also, carefully don't hold any
        // locks while we invoke a callback in case more I/O is scheduled to
        // prevent deadlock.
        //
        // Note that if we see an I/O completion with a null OVERLAPPED pointer
        // then it means it was our awakener, so just generate a readable
        // notification for it and carry on.
        let dst = &mut events.events;

        for status in events.statuses[..n].iter_mut() {
            if status.overlapped() as usize == 0 {
                dst.push(IoEvent::new(EventSet::readable(),
                                      Token(status.token())));
                continue
            }

            let callback = unsafe {
                (*(status.overlapped() as *mut Overlapped)).callback()
            };

            callback(status, dst);
        }

        // Clear out the list of deferred events and process them all
        // here.
        let defers = mem::replace(&mut *inner.defers.lock().unwrap(), Vec::new());

        for event in defers {
            dst.push(event);
        }

        // Finally, push all level triggered events
        for event in inner.level_triggered.lock().unwrap().values() {
            dst.push(*event);
        }

        Ok(())
    }

    fn should_block(&self) -> bool {
        if !self.inner.defers.lock().unwrap().is_empty() {
            return false;
        }

        self.inner.level_triggered.lock().unwrap().is_empty()
    }
}

pub struct Registration {
    key: Option<usize>,
    selector: Option<Arc<SelectorInner>>,
    token: Token,
    opts: PollOpt,
    interest: EventSet,
}

impl Registration {
    pub fn new() -> Registration {
        Registration {
            key: None,
            selector: None,
            token: Token(0),
            opts: PollOpt::empty(),
            interest: EventSet::none(),
        }
    }

    fn validate_opts(opts: PollOpt) -> io::Result<()> {
        if !opts.contains(PollOpt::edge()) && !opts.contains(PollOpt::level()) {
            return Err(other("must have edge or level opt"));
        }

        Ok(())
    }

    pub fn port(&self) -> Option<&CompletionPort> {
        self.selector.as_ref().map(|s| &s.port)
    }

    pub fn token(&self) -> Token { self.token }

    pub fn get_buffer(&self, size: usize) -> Vec<u8> {
        match self.selector {
            Some(ref s) => s.buffers.lock().unwrap().get(size),
            None => Vec::with_capacity(size),
        }
    }

    pub fn put_buffer(&self, buf: Vec<u8>) {
        if let Some(ref s) = self.selector {
            s.buffers.lock().unwrap().put(buf);
        }
    }

    /// Given a handle, token, and an event set describing how its ready,
    /// translate that to an `IoEvent` and process accordingly.
    ///
    /// This function will mask out all ignored events (e.g. ignore `writable`
    /// events if they weren't requested) and also handle properties such as
    /// `oneshot`.
    ///
    /// Eventually this function will probably also be modified to handle the
    /// `level()` polling option.
    pub fn push_event(&mut self, set: EventSet, events: &mut Vec<IoEvent>) {
        trace!("push_event; token={:?}; set={:?}; opts={:?}", self.token, set, self.opts);

        // If we're not actually interested in any of these events,
        // discard the event, and then if we're actually delivering an event we
        // stop listening if it's also a oneshot.
        let set = self.interest & set;

        if set != EventSet::none() {
            let event = IoEvent::new(set, self.token);

            if self.opts.is_edge() {
                events.push(event);

                if self.opts.is_oneshot() {
                    trace!("deregistering because of oneshot");
                    self.interest = EventSet::none();
                }
            } else {
                let selector = self.selector.as_ref()
                    .expect("expected a selector");

                let mut level = selector.level_triggered.lock().unwrap();

                match level.entry(self.key.expect("expected registration key")) {
                    Entry::Occupied(mut e) => {
                        let e = e.get_mut();
                        debug_assert!(e.token == self.token);
                        e.kind = e.kind | event.kind;
                    }
                    Entry::Vacant(e) => {
                        e.insert(event);
                    }
                }
            }
        }
    }

    pub fn unset_readiness(&mut self, set: EventSet) {
        trace!("unset_readiness; token={:?}; set={:?}", self.token, set);

        if let Some(key) = self.key {
            let mut map = self.selector.as_ref().expect("expected selector")
                .level_triggered.lock().unwrap();

            if let Entry::Occupied(mut e) = map.entry(key) {
                {
                    let event = e.get_mut();
                    event.kind = event.kind & !set;
                }

                if e.get().kind == EventSet::none() {
                    e.remove();
                }
            }
        }
    }

    pub fn associate(&mut self, selector: &mut Selector, token: Token) {
        self.selector = Some(selector.inner.clone());
        self.token = token;
    }

    pub fn register_socket(&mut self,
                           socket: &AsRawSocket,
                           selector: &mut Selector,
                           token: Token,
                           interest: EventSet,
                           opts: PollOpt) -> io::Result<()> {
        if self.selector.is_some() {
            return Err(other("socket already registered"))
        }

        try!(Registration::validate_opts(opts));
        try!(selector.inner.port.add_socket(self.token.as_usize(), socket));
        self.associate(selector, token);

        if opts.is_level() {
            self.key = Some(socket.as_raw_socket() as usize);
        }

        self.interest = set2mask(interest);
        self.opts = opts;
        Ok(())
    }

    pub fn reregister_socket(&mut self,
                             _socket: &AsRawSocket,
                             _selector: &mut Selector,
                             token: Token,
                             interest: EventSet,
                             opts: PollOpt) -> io::Result<()> {
        if self.selector.is_none() {
            return Err(other("socket not registered"))
        } else if self.token != token {
            return Err(other("cannot change token values on reregistration"))
        }
        try!(Registration::validate_opts(opts));
        // TODO: assert that self.selector == selector?

        self.interest = set2mask(interest);

        // Reset any queued level events
        if self.key.is_some() {
            self.unset_readiness(!interest);
        }

        self.opts = opts;
        Ok(())
    }

    pub fn deregister(&mut self) {
        trace!("deregister; token={:?}", self.token);

        if let Some(key) = self.key {
            self.key = None;
            self.selector.as_ref().expect("expected selector")
                .level_triggered.lock().unwrap().remove(&key);
        }
    }

    pub fn checked_deregister(&mut self, selector: &Selector) -> io::Result<()> {
        match self.selector {
            Some(ref s) => {
                let inner1: &SelectorInner = &*selector.inner;
                let inner2: &SelectorInner = &*s;

                if inner1 as *const SelectorInner != inner2 as *const SelectorInner {
                    return Err(other("socket registered with other selector"));
                }
            }
            None => {
                return Err(super::bad_state());
            }
        }

        self.deregister();
        Ok(())
    }

    /// Schedules some events for a handle to be delivered on the next turn of
    /// the event loop (without an associated I/O event).
    ///
    /// This function will discard this if:
    ///
    /// * The handle has been de-registered
    /// * The handle doesn't have an active registration (e.g. its oneshot
    ///   expired)
    pub fn defer(&mut self, set: EventSet) {
        if let Some(s) = self.selector.clone() {
            let mut dst = s.defers.lock().unwrap();
            self.push_event(set, &mut dst);
        }
    }
}

/// From a given interest set return the event set mask used to generate events.
///
/// The only currently interesting thing this function does is ensure that hup
/// events are generated for interests that only include the readable event.
fn set2mask(e: EventSet) -> EventSet {
    if e.is_readable() {
        e | EventSet::hup()
    } else {
        e
    }
}

fn other(s: &str) -> io::Error {
    io::Error::new(io::ErrorKind::Other, s)
}

#[derive(Debug)]
pub struct Events {
    /// Raw I/O event completions are filled in here by the call to `get_many`
    /// on the completion port above. These are then postprocessed into the
    /// vector below.
    statuses: Box<[CompletionStatus]>,

    /// Literal events returned by `get` to the upwards `EventLoop`
    events: Vec<IoEvent>,
}

impl Events {
    pub fn new() -> Events {
        // Use a nice large space for receiving I/O events (currently the same
        // as unix's 1024) and then also prepare the output vector to have the
        // same space.
        //
        // Note that it's possible for the output `events` to grow beyond 1024
        // capacity as it can also include deferred events, but that's certainly
        // not the end of the world!
        Events {
            statuses: vec![CompletionStatus::zero(); 1024].into_boxed_slice(),
            events: Vec::with_capacity(1024),
        }
    }

    pub fn len(&self) -> usize {
        self.events.len()
    }

    pub fn get(&self, idx: usize) -> IoEvent {
        self.events[idx]
    }
}

macro_rules! overlapped2arc {
    ($e:expr, $t:ty, $($field:ident).+) => (
        ::sys::windows::selector::Overlapped::cast_to_arc::<$t>($e,
                offset_of!($t, $($field).+))
    )
}

macro_rules! offset_of {
    ($t:ty, $($field:ident).+) => (
        &(*(0 as *const $t)).$($field).+ as *const _ as usize
    )
}

pub type Callback = fn(&CompletionStatus, &mut Vec<IoEvent>);

/// See sys::windows module docs for why this exists.
///
/// The gist of it is that `Selector` assumes that all `OVERLAPPED` pointers are
/// actually inside one of these structures so it can use the `Callback` stored
/// right after it.
///
/// We use repr(C) here to ensure that we can assume the overlapped pointer is
/// at the start of the structure so we can just do a cast.
#[repr(C)]
pub struct Overlapped {
    inner: UnsafeCell<miow::Overlapped>,
    callback: Callback,
}

impl Overlapped {
    pub fn new(cb: Callback) -> Overlapped {
        Overlapped {
            inner: UnsafeCell::new(miow::Overlapped::zero()),
            callback: cb,
        }
    }

    pub unsafe fn get_mut(&self) -> &mut miow::Overlapped {
        &mut *self.inner.get()
    }

    pub unsafe fn cast_to_arc<T>(overlapped: *mut miow::Overlapped,
                                 offset: usize) -> FromRawArc<T> {
        debug_assert!(offset < mem::size_of::<T>());
        FromRawArc::from_raw((overlapped as usize - offset) as *mut T)
    }

    pub unsafe fn callback(&self) -> &Callback {
        &self.callback
    }
}

// Overlapped's APIs are marked as unsafe Overlapped's APIs are marked as
// unsafe as they must be used with caution to ensure thread safety. The
// structure itself is safe to send across threads.
unsafe impl Send for Overlapped {}
unsafe impl Sync for Overlapped {}