1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
//! Streaming decompression functionality.

use super::*;
use shared::{HUFFMAN_LENGTH_ORDER, update_adler32};

use std::{cmp, ptr, slice};

use self::output_buffer::OutputBuffer;

pub const TINFL_LZ_DICT_SIZE: usize = 32_768;

/// A struct containing huffman code lengths and the huffman code tree used by the decompressor.
#[repr(C)]
struct HuffmanTable {
    /// Length of the code at each index.
    pub code_size: [u8; MAX_HUFF_SYMBOLS_0],
    /// Fast lookup table for shorter huffman codes.
    ///
    /// See `HuffmanTable::fast_lookup`.
    pub look_up: [i16; FAST_LOOKUP_SIZE as usize],
    /// Full huffman tree.
    ///
    /// Positive values are edge nodes/symbols, negative values are
    /// parent nodes/references to other nodes.
    pub tree: [i16; MAX_HUFF_TREE_SIZE],
}

impl HuffmanTable {
    fn new() -> HuffmanTable {
        HuffmanTable {
            code_size: [0; MAX_HUFF_SYMBOLS_0],
            look_up: [0; FAST_LOOKUP_SIZE as usize],
            tree: [0; MAX_HUFF_TREE_SIZE],
        }
    }

    /// Look for a symbol in the fast lookup table.
    /// The symbol is stored in the lower 9 bits, the length in the next 6.
    /// If the returned value is negative, the code wasn't found in the
    /// fast lookup table and the full tree has to be traversed to find the code.
    #[inline]
    fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 {
        self.look_up[(bit_buf & (FAST_LOOKUP_SIZE - 1) as BitBuffer) as usize]
    }

    /// Get the symbol and the code length from the huffman tree.
    #[inline]
    fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u32) -> (i32, u32) {
        let mut symbol = fast_symbol;
        // We step through the tree until we encounter a positive value, which indicates a
        // symbol.
        loop {
            // symbol here indicates the position of the left (0) node, if the next bit is 1
            // we add 1 to the lookup position to get the right node.
            symbol = self.tree[(!symbol + ((bit_buf >> code_len) & 1) as i32) as usize] as i32;
            code_len += 1;
            if symbol >= 0 {
                break;
            }
        }
        (symbol, code_len)
    }

    #[inline]
    /// Look up a symbol and code length from the bits in the provided bit buffer.
    ///
    /// Returns Some(symbol, length) on success,
    /// None if the length is 0.
    ///
    /// It's possible we could avoid checking for 0 if we can guarantee a sane table.
    /// TODO: Check if a smaller type for code_len helps performance.
    fn lookup(&self, bit_buf: BitBuffer) -> Option<(i32, u32)> {
        let symbol = self.fast_lookup(bit_buf).into();
        if symbol >= 0 {
            if (symbol >> 9) as u32 != 0 {
                Some((symbol, (symbol >> 9) as u32))
            } else {
                // Zero-length code.
                None
            }
        } else {
            // We didn't get a symbol from the fast lookup table, so check the tree instead.
            Some(self.tree_lookup(symbol.into(), bit_buf, FAST_LOOKUP_BITS.into()))
        }
    }
}

/// The number of huffman tables used.
const MAX_HUFF_TABLES: usize = 3;
/// The length of the first (literal/length) huffman table.
const MAX_HUFF_SYMBOLS_0: usize = 288;
/// The length of the second (distance) huffman table.
const MAX_HUFF_SYMBOLS_1: usize = 32;
/// The length of the last (huffman code length) huffman table.
const _MAX_HUFF_SYMBOLS_2: usize = 19;
/// The maximum length of a code that can be looked up in the fast lookup table.
const FAST_LOOKUP_BITS: u8 = 10;
/// The size of the fast lookup table.
const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS;
const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2;
const LITLEN_TABLE: usize = 0;
const DIST_TABLE: usize = 1;
const HUFFLEN_TABLE: usize = 2;


pub mod inflate_flags {
    /// Should we try to parse a zlib header?
    pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1;
    /// There is more input that hasn't been given to the decompressor yet.
    pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2;
    /// The output buffer should not wrap around.
    pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4;
    /// Should we calculate the adler32 checksum of the output data?
    pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8;
}

use self::inflate_flags::*;

const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4];

#[cfg(target_pointer_width = "64")]
type BitBuffer = u64;

#[cfg(not(target_pointer_width = "64"))]
type BitBuffer = u32;

/// Main decompression struct.
///
/// This is repr(C) to be usable in the C API.
#[repr(C)]
#[allow(bad_style)]
pub struct DecompressorOxide {
    /// Current state of the decompressor.
    state: core::State,
    /// Number of bits in the bit buffer.
    num_bits: u32,
    /// Zlib CMF
    z_header0: u32,
    /// Zlib FLG
    z_header1: u32,
    /// Adler32 checksum from the zlib header.
    z_adler32: u32,
    /// 1 if the current block is the last block, 0 otherwise.
    finish: u32,
    /// The type of the current block.
    block_type: u32,
    /// 1 if the adler32 value should be checked.
    check_adler32: u32,
    /// Last match distance.
    dist: u32,
    /// Variable used for match length, symbols, and a number of other things.
    counter: u32,
    /// Number of extra bits for the last length or distance code.
    num_extra: u32,
    /// Number of entries in each huffman table.
    table_sizes: [u32; MAX_HUFF_TABLES],
    /// Buffer of input data.
    bit_buf: BitBuffer,
    /// Position in the output buffer.
    dist_from_out_buf_start: usize,
    /// Huffman tables.
    tables: [HuffmanTable; MAX_HUFF_TABLES],
    /// Raw block header.
    raw_header: [u8; 4],
    /// Huffman length codes.
    len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137],
}

impl DecompressorOxide {
    /// Create a new tinfl_decompressor with all fields set to 0.
    pub fn new() -> DecompressorOxide {
        DecompressorOxide::default()
    }

    /// Set the current state to `Start`.
    #[inline]
    pub fn init(&mut self) {
        self.state = core::State::Start;
    }

    /// Create a new decompressor with only the state field initialized.
    ///
    /// This is how it's created in miniz. Unsafe due to uninitialized values.
    /// Usage is not recommended.
    #[inline]
    #[deprecated(since = "0.2.2",
                 note="Will be removed as the safety of using this is hard to verify.")]
    pub unsafe fn with_init_state_only() -> DecompressorOxide {
        let mut decomp: DecompressorOxide = mem::uninitialized();
        decomp.state = core::State::Start;
        decomp
    }

    /// Returns the adler32 checksum of the currently decompressed data.
    #[inline]
    pub fn adler32(&self) -> Option<u32> {
        if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 {
            Some(self.check_adler32)
        } else {
            None
        }
    }
}

impl Default for DecompressorOxide {
    /// Create a new tinfl_decompressor with all fields set to 0.
    #[inline(always)]
    fn default() -> Self {
        DecompressorOxide {
            state: core::State::Start,
            num_bits: 0,
            z_header0: 0,
            z_header1: 0,
            z_adler32: 0,
            finish: 0,
            block_type: 0,
            check_adler32: 0,
            dist: 0,
            counter: 0,
            num_extra: 0,
            table_sizes: [0; MAX_HUFF_TABLES],
            bit_buf: 0,
            dist_from_out_buf_start: 0,
            // TODO:(oyvindln) Check that copies here are optimized out in release mode.
            tables: [HuffmanTable::new(), HuffmanTable::new(), HuffmanTable::new()],
            raw_header: [0; 4],
            len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137],
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[repr(C)]
enum State {
    Start = 0,
    ReadZlibCmf,
    ReadZlibFlg,
    ReadBlockHeader,
    BlockTypeNoCompression,
    RawHeader,
    RawMemcpy1,
    RawMemcpy2,
    ReadTableSizes,
    ReadHufflenTableCodeSize,
    ReadLitlenDistTablesCodeSize,
    ReadExtraBitsCodeSize,
    DecodeLitlen,
    WriteSymbol,
    ReadExtraBitsLitlen,
    DecodeDistance,
    ReadExtraBitsDistance,
    RawReadFirstByte,
    RawStoreFirstByte,
    WriteLenBytesToEnd,
    BlockDone,
    HuffDecodeOuterLoop1,
    HuffDecodeOuterLoop2,
    ReadAdler32,

    DoneForever,

    // Failure states.
    BlockTypeUnexpected,
    BadCodeSizeSum,
    BadTotalSymbols,
    BadZlibHeader,
    DistanceOutOfBounds,
    BadRawLength,
    BadCodeSizeDistPrevLookup,
    InvalidLitlen,
    InvalidDist,
    InvalidCodeLen,
}

impl State {
    fn is_failure(&self) -> bool {
        match *self {
            BlockTypeUnexpected => true,
            BadCodeSizeSum => true,
            BadTotalSymbols => true,
            BadZlibHeader => true,
            DistanceOutOfBounds => true,
            BadRawLength => true,
            BadCodeSizeDistPrevLookup => true,
            InvalidLitlen => true,
            InvalidDist => true,
            _ => false,
        }
    }

    #[inline]
    fn begin(&mut self, new_state: State) {
        *self = new_state;
    }
}

use self::State::*;

// Not sure why miniz uses 32-bit values for these, maybe alignment/cache again?
// # Optimization
// We add a extra value at the end and make the tables 32 elements long
// so we can use a mask to avoid bounds checks.
// The invalid values are set to something high enough to avoid underflowing
// the match length.
/// Base length for each length code.
///
/// The base is used together with the value of the extra bits to decode the actual
/// length/distance values in a match.
#[cfg_attr(rustfmt, rustfmt_skip)]
const LENGTH_BASE: [u16; 32] = [
    3,  4,  5,  6,  7,  8,  9,  10,  11,  13,  15,  17,  19,  23,  27,  31,
    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512
];

/// Number of extra bits for each length code.
#[cfg_attr(rustfmt, rustfmt_skip)]
const LENGTH_EXTRA: [u8; 32] = [
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0
];

/// Base length for each distance code.
#[cfg_attr(rustfmt, rustfmt_skip)]
const DIST_BASE: [u16; 32] = [
    1,    2,    3,    4,    5,    7,      9,      13,     17,     25,    33,
    49,   65,   97,   129,  193,  257,    385,    513,    769,    1025,  1537,
    2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577, 32_768, 32_768
];

/// Number of extra bits for each distance code.
#[cfg_attr(rustfmt, rustfmt_skip)]
const DIST_EXTRA: [u8; 32] = [
    0, 0, 0, 0, 1, 1, 2,  2,  3,  3,  4,  4,  5,  5,  6,  6,
    7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13
];

/// The mask used when indexing the base/extra arrays.
const BASE_EXTRA_MASK: usize = 32 - 1;

/// Sets the value of all the elements of the slice to `val`.
#[inline]
fn memset<T: Copy>(slice: &mut [T], val: T) {
    for x in slice {
        *x = val
    }
}

/// Read an le u16 value from the slice iterator.
///
/// # Panics
/// Panics if there are less than two bytes left.
#[inline]
fn read_u16_le(iter: &mut slice::Iter<u8>) -> u16 {
    let ret = {
        let two_bytes = &iter.as_ref()[0..2];
        // # Unsafe
        //
        // The slice was just bounds checked to be 2 bytes long.
        unsafe { ptr::read_unaligned(two_bytes.as_ptr() as *const u16) }
    };
    iter.nth(1);
    u16::from_le(ret)
}

/// Read an le u32 value from the slice iterator.
///
/// # Panics
/// Panics if there are less than four bytes left.
#[inline(always)]
#[cfg(target_pointer_width = "64")]
fn read_u32_le(iter: &mut slice::Iter<u8>) -> u32 {
    let ret = {
        let four_bytes = &iter.as_ref()[..4];
        // # Unsafe
        //
        // The slice was just bounds checked to be 4 bytes long.
        unsafe { ptr::read_unaligned(four_bytes.as_ptr() as *const u32) }
    };
    iter.nth(3);
    u32::from_le(ret)
}

/// Ensure that there is data in the bit buffer.
///
/// On 64-bit platform, we use a 64-bit value so this will
/// result in there being at least 32 bits in the bit buffer.
/// This function assumes that there is at least 4 bytes left in the input buffer.
#[inline(always)]
#[cfg(target_pointer_width = "64")]
fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) {
    // Read four bytes into the buffer at once.
    if l.num_bits < 30 {
        l.bit_buf |= (read_u32_le(in_iter) as BitBuffer) << l.num_bits;
        l.num_bits += 32;
    }
}

/// Same as previous, but for non-64-bit platforms.
/// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer.
#[inline(always)]
#[cfg(not(target_pointer_width = "64"))]
fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) {
    // If the buffer is 32-bit wide, read 2 bytes instead.
    if l.num_bits < 15 {
        l.bit_buf |= (read_u16_le(in_iter) as BitBuffer) << l.num_bits;
        l.num_bits += 16;
    }
}

#[inline]
fn _transfer_unaligned_u64(buf: &mut &mut [u8], from: isize, to: isize) {
    unsafe {
        let mut data = ptr::read_unaligned((*buf).as_ptr().offset(from) as *const u32);
        ptr::write_unaligned((*buf).as_mut_ptr().offset(to) as *mut u32, data);

        data = ptr::read_unaligned((*buf).as_ptr().offset(from + 4) as *const u32);
        ptr::write_unaligned((*buf).as_mut_ptr().offset(to + 4) as *mut u32, data);
    };
}

/// Check that the zlib header is correct and that there is enough space in the buffer
/// for the window size specified in the header.
///
/// See https://tools.ietf.org/html/rfc1950
#[inline]
fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action {
    let mut failed =
    // cmf + flg should be divisible by 31.
        (((cmf * 256) + flg) % 31 != 0) ||
    // If this flag is set, a dictionary was used for this zlib compressed data.
    // This is currently not supported by miniz or miniz-oxide
        ((flg & 0b0010_0000) != 0) ||
    // Compression method. Only 8(DEFLATE) is defined by the standard.
        ((cmf & 15) != 8);

    let window_size = 1 << ((cmf >> 4) + 8);
    if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 {
        // Bail if the buffer is wrapping and the window size is larger than the buffer.
        failed |= (mask + 1) < window_size;
    }

    // Zlib doesn't allow window sizes above 32 * 1024.
    failed |= window_size > 32_768;

    if failed {
        Action::Jump(BadZlibHeader)
    } else {
        Action::Jump(ReadBlockHeader)
    }
}


enum Action {
    None,
    Jump(State),
    End(TINFLStatus),
}

/// Try to decode the next huffman code, and puts it in the counter field of the decompressor
/// if successful.
///
/// # Returns
/// The specified action returned from `f` on success,
/// `Action::End` if there are not enough data left to decode a symbol.
fn decode_huffman_code<F>(
    r: &mut DecompressorOxide,
    l: &mut LocalVars,
    table: usize,
    flags: u32,
    in_iter: &mut slice::Iter<u8>,
    f: F,
) -> Action
where
    F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action,
{
    // As the huffman codes can be up to 15 bits long we need at least 15 bits
    // ready in the bit buffer to start decoding the next huffman code.
    if l.num_bits < 15 {
        // First, make sure there is enough data in the bit buffer to decode a huffman code.
        if in_iter.len() < 2 {
            // If there is less than 2 bytes left in the input buffer, we try to look up
            // the huffman code with what's available, and return if that doesn't succeed.
            // Original explanation in miniz:
            // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
            //  * remaining in the input buffer falls below 2. */
            // /* It reads just enough bytes from the input stream that are needed to decode
            //  * the next Huffman code (and absolutely no more). It works by trying to fully
            //  * decode a */
            // /* Huffman code by using whatever bits are currently present in the bit buffer.
            //  * If this fails, it reads another byte, and tries again until it succeeds or
            //  * until the */
            // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */
            loop {
                let mut temp = r.tables[table].fast_lookup(l.bit_buf) as i32;

                if temp >= 0 {
                    let code_len = (temp >> 9) as u32;
                    if (code_len != 0) && (l.num_bits >= code_len) {
                        break;
                    }
                } else if l.num_bits > FAST_LOOKUP_BITS.into() {
                    let mut code_len = FAST_LOOKUP_BITS as u32;
                    loop {
                        temp = r.tables[table]
                            .tree[(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize] as i32;
                        code_len += 1;
                        if temp >= 0 || l.num_bits < code_len + 1 {
                            break;
                        }
                    }
                    if temp >= 0 {
                        break;
                    }
                }

                // TODO: miniz jumps straight to here after getting here again after failing to read
                // a byte.
                // Doing that lets miniz avoid re-doing the lookup that that was done in the
                // previous call.
                let mut byte = 0;
                if let a @ Action::End(_) =
                    read_byte(in_iter, flags, |b| {
                        byte = b;
                        Action::None
                    })
                {
                    return a;
                };

                // Do this outside closure for now to avoid borrowing r.
                l.bit_buf |= (byte as BitBuffer) << l.num_bits;
                l.num_bits += 8;

                if l.num_bits >= 15 {
                    break;
                }
            }
        } else {
            // There is enough data in the input buffer, so read the next two bytes
            // and add them to the bit buffer.
            // Unwrapping here is fine since we just checked that there are at least two
            // bytes left.
            l.bit_buf |= (read_u16_le(in_iter) as BitBuffer) << l.num_bits;
            l.num_bits += 16;
        }
    }

    // We now have at least 15 bits in the input buffer.
    let mut symbol = r.tables[table].fast_lookup(l.bit_buf) as i32;
    let code_len;
    // If the symbol was found in the fast lookup table.
    if symbol >= 0 {
        // Get the length value from the top bits.
        // As we shift down the sign bit, converting to an unsigned value
        // shouldn't overflow.
        code_len = (symbol >> 9) as u32;
        // Mask out the length value.
        symbol &= 511;
    } else {
        let res = r.tables[table].tree_lookup(symbol, l.bit_buf, FAST_LOOKUP_BITS as u32);
        symbol = res.0;
        code_len = res.1 as u32;
    };

    if code_len == 0 {
        return Action::Jump(InvalidCodeLen);
    }

    l.bit_buf >>= code_len as u32;
    l.num_bits -= code_len;
    f(r, l, symbol)
}

#[inline]
fn read_byte<F>(in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action
where
    F: FnOnce(u8) -> Action,
{
    match in_iter.next() {
        None => end_of_input(flags),
        Some(&byte) => f(byte),
    }
}

// TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always))
#[inline]
fn read_bits<F>(
    l: &mut LocalVars,
    amount: u32,
    in_iter: &mut slice::Iter<u8>,
    flags: u32,
    f: F,
) -> Action
where
    F: FnOnce(&mut LocalVars, BitBuffer) -> Action,
{
    while l.num_bits < amount {
        match read_byte(in_iter, flags, |byte| {
            l.bit_buf |= (byte as BitBuffer) << l.num_bits;
            l.num_bits += 8;
            Action::None
        }) {
            Action::None => (),
            action => return action,
        }
    }

    let bits = l.bit_buf & ((1 << amount) - 1);
    l.bit_buf >>= amount;
    l.num_bits -= amount;
    f(l, bits)
}

#[inline]
fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action
where
    F: FnOnce(&mut LocalVars) -> Action,
{
    let num_bits = l.num_bits & 7;
    read_bits(l, num_bits, in_iter, flags, |l, _| f(l))
}

#[inline]
fn end_of_input(flags: u32) -> Action {
    Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 {
        TINFLStatus::NeedsMoreInput
    } else {
        TINFLStatus::FailedCannotMakeProgress
    })
}

#[inline]
fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 {
    let res = cmp::min(l.num_bits >> 3, max);
    l.num_bits -= res << 3;
    res
}

fn start_static_table(r: &mut DecompressorOxide) {
    r.table_sizes[LITLEN_TABLE] = 288;
    r.table_sizes[DIST_TABLE] = 32;
    memset(&mut r.tables[LITLEN_TABLE].code_size[0..144], 8);
    memset(&mut r.tables[LITLEN_TABLE].code_size[144..256], 9);
    memset(&mut r.tables[LITLEN_TABLE].code_size[256..280], 7);
    memset(&mut r.tables[LITLEN_TABLE].code_size[280..288], 8);
    memset(&mut r.tables[DIST_TABLE].code_size[0..32], 5);
}

fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Action {
    loop {
        let table = &mut r.tables[r.block_type as usize];
        let table_size = r.table_sizes[r.block_type as usize] as usize;
        let mut total_symbols = [0u32; 16];
        let mut next_code = [0u32; 17];
        memset(&mut table.look_up[..], 0);
        memset(&mut table.tree[..], 0);

        for &code_size in &table.code_size[..table_size] {
            total_symbols[code_size as usize] += 1;
        }

        let mut used_symbols = 0;
        let mut total = 0;
        for i in 1..16 {
            used_symbols += total_symbols[i];
            total += total_symbols[i];
            total <<= 1;
            next_code[i + 1] = total;
        }

        if total != 65_536 && used_symbols > 1 {
            return Action::Jump(BadTotalSymbols);
        }

        let mut tree_next = -1;
        for symbol_index in 0..table_size {
            let mut rev_code = 0;
            let code_size = table.code_size[symbol_index];
            if code_size == 0 {
                continue;
            }

            let mut cur_code = next_code[code_size as usize];
            next_code[code_size as usize] += 1;

            for _ in 0..code_size {
                rev_code = (rev_code << 1) | (cur_code & 1);
                cur_code >>= 1;
            }

            if code_size <= FAST_LOOKUP_BITS {
                let k = ((code_size as i16) << 9) | symbol_index as i16;
                while rev_code < FAST_LOOKUP_SIZE {
                    table.look_up[rev_code as usize] = k;
                    rev_code += 1 << code_size;
                }
                continue;
            }

            let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize];
            if tree_cur == 0 {
                table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next as
                    i16;
                tree_cur = tree_next;
                tree_next -= 2;
            }

            rev_code >>= FAST_LOOKUP_BITS - 1;
            for _ in FAST_LOOKUP_BITS + 1..code_size {
                rev_code >>= 1;
                tree_cur -= (rev_code & 1) as i16;
                if table.tree[(-tree_cur - 1) as usize] == 0 {
                    table.tree[(-tree_cur - 1) as usize] = tree_next as i16;
                    tree_cur = tree_next;
                    tree_next -= 2;
                } else {
                    tree_cur = table.tree[(-tree_cur - 1) as usize];
                }
            }

            rev_code >>= 1;
            tree_cur -= (rev_code & 1) as i16;
            table.tree[(-tree_cur - 1) as usize] = symbol_index as i16;
        }

        if r.block_type == 2 {
            l.counter = 0;
            return Action::Jump(ReadLitlenDistTablesCodeSize);
        }

        if r.block_type == 0 {
            break;
        }
        r.block_type -= 1;
    }

    l.counter = 0;
    Action::Jump(DecodeLitlen)
}

// A helper macro for generating the state machine.
//
// As Rust doesn't have fallthrough on matches, we have to return to the match statement
// and jump for each state change. (Which would ideally be optimized away, but often isn't.)
macro_rules! generate_state {
    ($state: ident, $state_machine: tt, $f: expr) => {
        loop {
            match $f {
                Action::None => continue,
                Action::Jump(new_state) => {
                    $state = new_state;
                    continue $state_machine;
                },
                Action::End(result) => break $state_machine result,
            }
        }
    };
}

#[derive(Copy, Clone)]
struct LocalVars {
    pub bit_buf: BitBuffer,
    pub num_bits: u32,
    pub dist: u32,
    pub counter: u32,
    pub num_extra: u32,
    pub dist_from_out_buf_start: usize,
}

#[inline]
fn transfer(
    out_slice: &mut [u8],
    mut source_pos: usize,
    mut out_pos: usize,
    match_len: usize,
    out_buf_size_mask: usize,
) {
    debug_assert!(out_pos + match_len <= out_slice.len());

    for _ in 0..match_len >> 2 {
        out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
        out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
        out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
        out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask];
        source_pos += 4;
        out_pos += 4;
    }

    match match_len & 3 {
        0 => (),
        1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask],
        2 => {
            out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
            out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
        },
        3 =>  {
            out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
            out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
            out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
        },
        _ => unreachable!(),
    }
}

/// Presumes that there is at least match_len bytes in output left.
#[inline]
fn apply_match(
    out_slice: &mut [u8],
    out_pos: usize,
    dist: usize,
    match_len: usize,
    out_buf_size_mask: usize,
) {
    debug_assert!(out_pos + match_len <= out_slice.len());

    let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask;

    if match_len == 3 {
        // Fast path for match len 3.
        out_slice[out_pos] = out_slice[source_pos];
        out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
        out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
        return;
    }

    if cfg!(not(any(target_arch = "x86", target_arch = "x86_64"))) {
        // We are not on x86 so copy manually.
        transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
        return;
    }

    if source_pos >= out_pos && (source_pos - out_pos) < match_len {
        transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
    } else if match_len <= dist && source_pos + match_len < out_slice.len() {
        // Destination and source segments does not intersect and source does not wrap.
        if source_pos < out_pos {
            let (from_slice, to_slice) = out_slice.split_at_mut(out_pos);
            to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]);
        } else {
            let (to_slice, from_slice) = out_slice.split_at_mut(source_pos);
            to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]);
        }
    } else {
        transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
    }
}

/// Fast inner decompression loop which is run  while there is at least
/// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer
/// (The maximum one match would need + 1).
///
/// This was inspired by a similar optimization in zlib, which uses this info to do
/// faster unchecked copies of multiple bytes at a time.
/// Currently we don't do this here, but this function does avoid having to jump through the
/// big match loop on each state change(as rust does not have fallthrough or gotos at the moment),
/// and already improves decompression speed a fair bit.
fn decompress_fast(
    r: &mut DecompressorOxide,
    mut in_iter: &mut slice::Iter<u8>,
    out_buf: &mut OutputBuffer,
    flags: u32,
    local_vars: &mut LocalVars,
    out_buf_size_mask: usize,
) -> (TINFLStatus, State) {
    // Make a local copy of the most used variables, to avoid having to update and read from values
    // in a random memory location and to encourage more register use.
    let mut l = *local_vars;
    let mut state;

    let status: TINFLStatus = 'o: loop {
        state = State::DecodeLitlen;
        'litlen: loop {
            // This function assumes that there is at least 259 bytes left in the output buffer,
            // and that there is at least 14 bytes left in the input buffer. 14 input bytes:
            // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist)
            // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes
            // We need the one extra byte as we may write one length and one full match
            // before checking again.
            if out_buf.bytes_left() < 259 || in_iter.len() < 14 {
                state = State::DecodeLitlen;
                break 'o TINFLStatus::Done;
            }

            fill_bit_buffer(&mut l, &mut in_iter);

            if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
                l.counter = symbol as u32;
                l.bit_buf >>= code_len;
                l.num_bits -= code_len;

                if (l.counter & 256) != 0 {
                    // The symbol is not a literal.
                    break;
                } else {
                    // If we have a 32-bit buffer we need to read another two bytes now
                    // to have enough bits to keep going.
                    if cfg!(not(target_pointer_width = "64")) {
                        fill_bit_buffer(&mut l, &mut in_iter);
                    }

                    if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
                        l.bit_buf >>= code_len;
                        l.num_bits -= code_len;
                        // The previous symbol was a literal, so write it directly and check
                        // the next one.
                        out_buf.write_byte(l.counter as u8);
                        if (symbol & 256) != 0 {
                            l.counter = symbol as u32;
                            // The symbol is a length value.
                            break;
                        } else {
                            // The symbol is a literal, so write it directly and continue.
                            out_buf.write_byte(symbol as u8);
                        }
                    } else {
                        state.begin(InvalidCodeLen);
                        break 'o TINFLStatus::Failed;
                    }
                }
            } else {
                state.begin(InvalidCodeLen);
                break 'o TINFLStatus::Failed;
            }
        }

        // Mask the top bits since they may contain length info.
        l.counter &= 511;
        if l.counter == 256 {
            // We hit the end of block symbol.
            state.begin(BlockDone);
            break 'o TINFLStatus::Done;
        } else if l.counter > 285 {
            // Invalid code.
            // We already verified earlier that the code is > 256.
            state.begin(InvalidLitlen);
            break 'o TINFLStatus::Failed;
        } else {
            // The symbol was a length code.
            // # Optimization
            // Mask the value to avoid bounds checks
            // We could use get_unchecked later if can statically verify that
            // this will never go out of bounds.
            l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32;
            l.counter = LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32;
            // Length and distance codes have a number of extra bits depending on
            // the base, which together with the base gives us the exact value.

            fill_bit_buffer(&mut l, &mut in_iter);
            if l.num_extra != 0 {
                let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1);
                l.bit_buf >>= l.num_extra;
                l.num_bits -= l.num_extra;
                l.counter += extra_bits as u32;
            }

            // We found a length code, so a distance code should follow.

            if cfg!(not(target_pointer_width = "64")) {
                fill_bit_buffer(&mut l, &mut in_iter);
            }

            if let Some((mut symbol, code_len)) = r.tables[DIST_TABLE].lookup(l.bit_buf) {
                symbol &= 511;
                l.bit_buf >>= code_len;
                l.num_bits -= code_len;
                if symbol > 29 {
                    state.begin(InvalidDist);
                    break 'o TINFLStatus::Failed;
                }

                l.num_extra = DIST_EXTRA[symbol as usize] as u32;
                l.dist = DIST_BASE[symbol as usize] as u32;
            } else {
                state.begin(InvalidCodeLen);
                break 'o TINFLStatus::Failed;
            }

            if l.num_extra != 0 {
                fill_bit_buffer(&mut l, &mut in_iter);
                let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1);
                l.bit_buf >>= l.num_extra;
                l.num_bits -= l.num_extra;
                l.dist += extra_bits as u32;
            }

            l.dist_from_out_buf_start = out_buf.position();
            if l.dist as usize > l.dist_from_out_buf_start &&
                (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)
            {
                // We encountered a distance that refers a position before
                // the start of the decoded data, so we can't continue.
                state.begin(DistanceOutOfBounds);
                break TINFLStatus::Failed;
            }

            apply_match(
                out_buf.get_mut(),
                l.dist_from_out_buf_start,
                l.dist as usize,
                l.counter as usize,
                out_buf_size_mask,
            );

            out_buf.set_position(l.dist_from_out_buf_start + l.counter as usize);
        }
    };

    *local_vars = l;
    (status, state)
}

/// Main decompression function. Keeps decompressing data from `in_buf` until the in_buf is emtpy,
/// out_cur is full, the end of the deflate stream is hit, or there is an error in the deflate
/// stream.
///
/// # Arguments
///
/// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will
/// start at the first byte of this buffer.
///
/// `out_cur` is a mutable cursor into the buffer that will store the decompressed data, and that
/// stores previously decompressed data if any.
/// * The position of the output cursor indicates where in the output buffer slice writing should
/// start.
/// * The decompression function normally needs access to 32KiB of the previously decompressed data
///(or to the beginning of the decompressed data if less than 32KiB has been decompressed.)
///     - If this data is not available, decompression may fail.
///     - Some deflate compressors allow specifying a window size which limits match distances to
/// less than this, or alternatively an RLE mode where matches will only refer to the previous byte
/// and thus allows a smaller output buffer. The window size can be specified in the zlib
/// header structure, however, the header data should not be relied on to be correct.
///
/// `flags`
/// Flags to indicate settings and status to the decompression function.
/// * The `TINFL_FLAG_HAS_MORE_INPUT` has to be specified if more compressed data is to be provided
/// in a subsequent call to this function.
/// * See the the [`inflate_flags`](inflate_flags/index.html) module for details on other flags.
///
/// # Returns
/// returns a tuple containing the status of the compressor, the number of input bytes read, and the
/// number of bytes output to `out_cur`.
/// Updates the position of `out_cur` to point to the next free spot in the output buffer.
///
/// This function shouldn't panic pending any bugs.
pub fn decompress(
    r: &mut DecompressorOxide,
    in_buf: &[u8],
    out_cur: &mut Cursor<&mut [u8]>,
    flags: u32,
) -> (TINFLStatus, usize, usize) {
    let res = decompress_inner(r, in_buf, out_cur, flags);
    let new_pos = out_cur.position() + res.2 as u64;
    out_cur.set_position(new_pos);
    res
}

#[inline]
fn decompress_inner(
    r: &mut DecompressorOxide,
    in_buf: &[u8],
    out_cur: &mut Cursor<&mut [u8]>,
    flags: u32,
) -> (TINFLStatus, usize, usize) {
    let out_buf_start_pos = out_cur.position() as usize;
    let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 {
        usize::max_value()
    } else {
        // In the case of zero len, any attempt to write would produce HasMoreOutput,
        // so to gracefully process the case of there really being no output,
        // set the mask to all zeros.
        out_cur.get_ref().len().saturating_sub(1)
    };

    // Ensure the output buffer's size is a power of 2, unless the output buffer
    // is large enough to hold the entire output file (in which case it doesn't
    // matter).
    // Also make sure that the output buffer position is not past the end of the output buffer.
    if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0  ||
        out_cur.position() > out_cur.get_ref().len() as u64 {
        return (TINFLStatus::BadParam, 0, 0);
    }

    let mut in_iter = in_buf.iter();

    let mut state = r.state;

    let mut out_buf = OutputBuffer::from_slice_and_pos(out_cur.get_mut(), out_buf_start_pos);

    // TODO: Borrow instead of Copy
    let mut l = LocalVars {
        bit_buf: r.bit_buf,
        num_bits: r.num_bits,
        dist: r.dist,
        counter: r.counter,
        num_extra: r.num_extra,
        dist_from_out_buf_start: r.dist_from_out_buf_start,
    };


    let mut status = 'state_machine: loop {
        match state {
            Start => generate_state!(state, 'state_machine, {
                l.bit_buf = 0;
                l.num_bits = 0;
                l.dist = 0;
                l.counter = 0;
                l.num_extra = 0;
                r.z_header0 = 0;
                r.z_header1 = 0;
                r.z_adler32 = 1;
                r.check_adler32 = 1;
                if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 {
                    Action::Jump(State::ReadZlibCmf)
                } else {
                    Action::Jump(State::ReadBlockHeader)
                }
            }),

            ReadZlibCmf => generate_state!(state, 'state_machine, {
                read_byte(&mut in_iter, flags, |cmf| {
                    r.z_header0 = cmf as u32;
                    Action::Jump(State::ReadZlibFlg)
                })
            }),

            ReadZlibFlg => generate_state!(state, 'state_machine, {
                read_byte(&mut in_iter, flags, |flg| {
                    r.z_header1 = flg as u32;
                    validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask)
                })
            }),

            // Read the block header and jump to the relevant section depending on the block type.
            ReadBlockHeader => generate_state!(state, 'state_machine, {
                read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| {
                    r.finish = (bits & 1) as u32;
                    r.block_type = (bits >> 1) as u32 & 3;
                    match r.block_type {
                        0 => Action::Jump(BlockTypeNoCompression),
                        1 => {
                            start_static_table(r);
                            init_tree(r, l)
                        },
                        2 => {
                            l.counter = 0;
                            Action::Jump(ReadTableSizes)
                        },
                        3 => Action::Jump(BlockTypeUnexpected),
                        _ => unreachable!()
                    }
                })
            }),

            // Raw/Stored/uncompressed block.
            BlockTypeNoCompression => generate_state!(state, 'state_machine, {
                pad_to_bytes(&mut l, &mut in_iter, flags, |l| {
                    l.counter = 0;
                    Action::Jump(RawHeader)
                })
            }),

            // Check that the raw block header is correct.
            RawHeader => generate_state!(state, 'state_machine, {
                if l.counter < 4 {
                    // Read block length and block length check.
                    if l.num_bits != 0 {
                        read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
                            r.raw_header[l.counter as usize] = bits as u8;
                            l.counter += 1;
                            Action::None
                        })
                    } else {
                        read_byte(&mut in_iter, flags, |byte| {
                            r.raw_header[l.counter as usize] = byte;
                            l.counter += 1;
                            Action::None
                        })
                    }
                } else {
                    // Check if the length value of a raw block is correct.
                    // The 2 first (2-byte) words in a raw header are the length and the
                    // ones complement of the length.
                    let length = r.raw_header[0] as u16 | ((r.raw_header[1] as u16) << 8);
                    let check = r.raw_header[2] as u16 | ((r.raw_header[3] as u16) << 8);
                    let valid = length == !check;
                    l.counter = length.into();

                    if !valid {
                        Action::Jump(BadRawLength)
                    } else if l.counter == 0 {
                        // Empty raw block. Sometimes used for synchronization.
                        Action::Jump(BlockDone)
                    } else if l.num_bits != 0 {
                        // There is some data in the bit buffer, so we need to write that first.
                        Action::Jump(RawReadFirstByte)
                    } else {
                        // The bit buffer is empty, so memcpy the rest of the uncompressed data from
                        // the block.
                        Action::Jump(RawMemcpy1)
                    }
                }
            }),

            // Read the byte from the bit buffer.
            RawReadFirstByte => generate_state!(state, 'state_machine, {
                read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
                    l.dist = bits as u32;
                    Action::Jump(RawStoreFirstByte)
                })
            }),

            // Write the byte we just read to the output buffer.
            RawStoreFirstByte => generate_state!(state, 'state_machine, {
                if out_buf.bytes_left() == 0 {
                    Action::End(TINFLStatus::HasMoreOutput)
                } else {
                    out_buf.write_byte(l.dist as u8);
                    l.counter -= 1;
                    if l.counter == 0 || l.num_bits == 0 {
                        Action::Jump(RawMemcpy1)
                    } else {
                        // There is still some data left in the bit buffer that needs to be output.
                        // TODO: Changed this to jump to `RawReadfirstbyte` rather than
                        // `RawStoreFirstByte` as that seemed to be the correct path, but this
                        // needs testing.
                        Action::Jump(RawReadFirstByte)
                    }
                }
            }),

            RawMemcpy1 => generate_state!(state, 'state_machine, {
                if l.counter == 0 {
                    Action::Jump(BlockDone)
                } else if out_buf.bytes_left() == 0 {
                    Action::End(TINFLStatus::HasMoreOutput)
                } else {
                    Action::Jump(RawMemcpy2)
                }
            }),

            RawMemcpy2 => generate_state!(state, 'state_machine, {
                if in_iter.len() > 0 {
                    // Copy as many raw bytes as possible from the input to the output using memcpy.
                    // Raw block lengths are limited to 64 * 1024, so casting through usize and u32
                    // is not an issue.
                    let space_left = out_buf.bytes_left();
                    let bytes_to_copy = cmp::min(cmp::min(
                        space_left,
                        in_iter.len()),
                        l.counter as usize
                    );

                    out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]);

                    (&mut in_iter).nth(bytes_to_copy - 1);
                    l.counter -= bytes_to_copy as u32;
                    Action::Jump(RawMemcpy1)
                } else {
                    end_of_input(flags)
                }
            }),

            // Read how many huffman codes/symbols are used for each table.
            ReadTableSizes => generate_state!(state, 'state_machine, {
                if l.counter < 3 {
                    let num_bits = [5, 5, 4][l.counter as usize];
                    read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| {
                        r.table_sizes[l.counter as usize] =
                            bits as u32 + MIN_TABLE_SIZES[l.counter as usize] as u32;
                        l.counter += 1;
                        Action::None
                    })
                } else {
                    memset(&mut r.tables[HUFFLEN_TABLE].code_size[..], 0);
                    l.counter = 0;
                    Action::Jump(ReadHufflenTableCodeSize)
                }
            }),

            // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used
            // to decode the lengths of the main tables.
            ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, {
                if l.counter < r.table_sizes[HUFFLEN_TABLE] {
                    read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| {
                        // These lengths are not stored in a normal ascending order, but rather one
                        // specified by the deflate specification intended to put the most used
                        // values at the front as trailing zero lengths do not have to be stored.
                        r.tables[HUFFLEN_TABLE]
                            .code_size[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] =
                                bits as u8;
                        l.counter += 1;
                        Action::None
                    })
                } else {
                    r.table_sizes[HUFFLEN_TABLE] = 19;
                    init_tree(r, &mut l)
                }
            }),

            ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, {
                if l.counter < r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] {
                    decode_huffman_code(
                        r, &mut l, HUFFLEN_TABLE,
                        flags, &mut in_iter, |r, l, symbol| {
                            l.dist = symbol as u32;
                            if l.dist < 16 {
                                r.len_codes[l.counter as usize] = l.dist as u8;
                                l.counter += 1;
                                Action::None
                            } else if l.dist == 16 && l.counter == 0 {
                                Action::Jump(BadCodeSizeDistPrevLookup)
                            } else {
                                l.num_extra = [2, 3, 7][l.dist as usize - 16];
                                Action::Jump(ReadExtraBitsCodeSize)
                            }
                        }
                    )
                } else if l.counter != r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] {
                    Action::Jump(BadCodeSizeSum)
                } else {
                    r.tables[LITLEN_TABLE].code_size[..r.table_sizes[LITLEN_TABLE] as usize]
                        .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]);

                    let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize;
                    let dist_table_end = (r.table_sizes[LITLEN_TABLE] +
                                          r.table_sizes[DIST_TABLE]) as usize;
                    r.tables[DIST_TABLE].code_size[..r.table_sizes[DIST_TABLE] as usize]
                        .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]);

                    r.block_type -= 1;
                    init_tree(r, &mut l)
                }
            }),

            ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, {
                let num_extra = l.num_extra;
                read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| {
                    // Mask to avoid a bounds check.
                    extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3];
                    let val = if l.dist == 16 {
                        r.len_codes[l.counter as usize - 1]
                    } else {
                        0
                    };

                    memset(
                        &mut r.len_codes[
                            l.counter as usize..l.counter as usize + extra_bits as usize
                        ],
                        val,
                    );
                    l.counter += extra_bits as u32;
                    Action::Jump(ReadLitlenDistTablesCodeSize)
                })
            }),

            DecodeLitlen => generate_state!(state, 'state_machine, {
                if in_iter.len() < 4 || out_buf.bytes_left() < 2 {
                    // See if we can decode a literal with the data we have left.
                    // Jumps to next state (WriteSymbol) if successful.
                    decode_huffman_code(
                        r,
                        &mut l,
                        LITLEN_TABLE,
                        flags,
                        &mut in_iter,
                        |_r, l, symbol| {
                            l.counter = symbol as u32;
                            Action::Jump(WriteSymbol)
                        },
                    )
                } else if
                // If there is enough space, use the fast inner decompression
                // function.
                    out_buf.bytes_left() >= 259 &&
                    in_iter.len() >= 14
                {
                    let (status, new_state) = decompress_fast(
                        r,
                        &mut in_iter,
                        &mut out_buf,
                        flags,
                        &mut l,
                        out_buf_size_mask,
                    );

                    state = new_state;
                    if status == TINFLStatus::Done {
                        Action::Jump(new_state)
                    } else {
                        Action::End(status)
                    }
                } else {
                    fill_bit_buffer(&mut l, &mut in_iter);

                    if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {

                    l.counter = symbol as u32;
                    l.bit_buf >>= code_len;
                    l.num_bits -= code_len;

                    if (l.counter & 256) != 0 {
                        // The symbol is not a literal.
                        Action::Jump(HuffDecodeOuterLoop1)
                    } else {
                        // If we have a 32-bit buffer we need to read another two bytes now
                        // to have enough bits to keep going.
                        if cfg!(not(target_pointer_width = "64")) {
                            fill_bit_buffer(&mut l, &mut in_iter);
                        }

                        if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {

                            l.bit_buf >>= code_len;
                            l.num_bits -= code_len;
                            // The previous symbol was a literal, so write it directly and check
                            // the next one.
                            out_buf.write_byte(l.counter as u8);
                            if (symbol & 256) != 0 {
                                l.counter = symbol as u32;
                                // The symbol is a length value.
                                Action::Jump(HuffDecodeOuterLoop1)
                            } else {
                                // The symbol is a literal, so write it directly and continue.
                                out_buf.write_byte(symbol as u8);
                                Action::None
                            }
                        } else {
                            Action::Jump(InvalidCodeLen)
                        }
                    }
                    } else {
                        Action::Jump(InvalidCodeLen)
                    }
                }
            }),

            WriteSymbol => generate_state!(state, 'state_machine, {
                if l.counter >= 256 {
                    Action::Jump(HuffDecodeOuterLoop1)
                } else if out_buf.bytes_left() > 0 {
                    out_buf.write_byte(l.counter as u8);
                    Action::Jump(DecodeLitlen)
                } else {
                    Action::End(TINFLStatus::HasMoreOutput)
                }
            }),

            HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, {
                // Mask the top bits since they may contain length info.
                l.counter &= 511;

                if l.counter == 256 {
                    // We hit the end of block symbol.
                    Action::Jump(BlockDone)
                } else if l.counter > 285 {
                    // Invalid code.
                    // We already verified earlier that the code is > 256.
                    Action::Jump(InvalidLitlen)
                } else {
                    // # Optimization
                    // Mask the value to avoid bounds checks
                    // We could use get_unchecked later if can statically verify that
                    // this will never go out of bounds.
                    l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32;
                    l.counter = LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32;
                    // Length and distance codes have a number of extra bits depending on
                    // the base, which together with the base gives us the exact value.
                    if l.num_extra != 0 {
                        Action::Jump(ReadExtraBitsLitlen)
                    } else {
                        Action::Jump(DecodeDistance)
                    }
                }
            }),

            ReadExtraBitsLitlen => generate_state!(state, 'state_machine, {
                let num_extra = l.num_extra;
                read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| {
                    l.counter += extra_bits as u32;
                    Action::Jump(DecodeDistance)
                })
            }),

            DecodeDistance => generate_state!(state, 'state_machine, {
                // Try to read a huffman code from the input buffer and look up what
                // length code the decoded symbol refers to.
                decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| {
                    if symbol > 29 {
                        // Invalid distance code.
                        return Action::Jump(InvalidDist)
                    }
                    // # Optimization
                    // Mask the value to avoid bounds checks
                    // We could use get_unchecked later if can statically verify that
                    // this will never go out of bounds.
                    l.num_extra = DIST_EXTRA[symbol as usize & BASE_EXTRA_MASK] as u32;
                    l.dist = DIST_BASE[symbol as usize & BASE_EXTRA_MASK] as u32;
                    if l.num_extra != 0 {
                        // ReadEXTRA_BITS_DISTACNE
                        Action::Jump(ReadExtraBitsDistance)
                    } else {
                        Action::Jump(HuffDecodeOuterLoop2)
                    }
                })
            }),

            ReadExtraBitsDistance => generate_state!(state, 'state_machine, {
                let num_extra = l.num_extra;
                read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| {
                    l.dist += extra_bits as u32;
                    Action::Jump(HuffDecodeOuterLoop2)
                })
            }),

            HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, {
                l.dist_from_out_buf_start = out_buf.position();
                if l.dist as usize > l.dist_from_out_buf_start &&
                    (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)
                {
                    // We encountered a distance that refers a position before
                    // the start of the decoded data, so we can't continue.
                    Action::Jump(DistanceOutOfBounds)
                } else {
                    let mut out_pos = out_buf.position();
                    let mut source_pos = l.dist_from_out_buf_start
                        .wrapping_sub(l.dist as usize) & out_buf_size_mask;

                    let out_len = out_buf.get_ref().len() as usize;
                    let match_end_pos = out_buf.position() + l.counter as usize;

                    if match_end_pos > out_len ||
                        // miniz doesn't do this check here. Not sure how it makes sure
                        // that this case doesn't happen.
                        (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize)
                    {
                        // Not enough space for all of the data in the output buffer,
                        // so copy what we have space for.
                        if l.counter == 0 {
                            Action::Jump(DecodeLitlen)
                        } else {
                            Action::Jump(WriteLenBytesToEnd)
                        }
                    } else {
                        apply_match(
                            out_buf.get_mut(),
                            out_pos,
                            l.dist as usize,
                            l.counter as usize,
                            out_buf_size_mask
                        );
                        out_buf.set_position(out_pos + l.counter as usize);
                        Action::Jump(DecodeLitlen)
                    }
                }
            }),

            WriteLenBytesToEnd => generate_state!(state, 'state_machine, {
                if out_buf.bytes_left() > 0 {
                    let source_pos = l.dist_from_out_buf_start
                        .wrapping_sub(l.dist as usize) & out_buf_size_mask;
                    let out_pos = out_buf.position();

                    let len = cmp::min(out_buf.bytes_left(), l.counter as usize);
                    transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask);

                    l.dist_from_out_buf_start += len;
                    out_buf.set_position(out_pos + len);
                    l.counter -= len as u32;
                    if l.counter == 0 {
                        Action::Jump(DecodeLitlen)
                    } else {
                        Action::None
                    }
                } else {
                    Action::End(TINFLStatus::HasMoreOutput)
                }
            }),

            BlockDone => generate_state!(state, 'state_machine, {
                // End once we've read the last block.
                if r.finish != 0 {
                    pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None);

                    let in_consumed = in_buf.len() - in_iter.len();
                    let undo = undo_bytes(&mut l, in_consumed as u32) as usize;
                    in_iter = in_buf[in_consumed - undo..].iter();

                    l.bit_buf &= (((1 as BitBuffer) << l.num_bits) - 1) as BitBuffer;
                    debug_assert_eq!(l.num_bits, 0);

                    if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 {
                        l.counter = 0;
                        Action::Jump(ReadAdler32)
                    } else {
                        Action::Jump(DoneForever)
                    }
                } else {
                    Action::Jump(ReadBlockHeader)
                }
            }),

            ReadAdler32 => generate_state!(state, 'state_machine, {
                if l.counter < 4 {
                    if l.num_bits != 0 {
                        read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
                            r.z_adler32 <<= 8;
                            r.z_adler32 |= bits as u32;
                            l.counter += 1;
                            Action::None
                        })
                    } else {
                        read_byte(&mut in_iter, flags, |byte| {
                            r.z_adler32 <<= 8;
                            r.z_adler32 |= byte as u32;
                            l.counter += 1;
                            Action::None
                        })
                    }
                } else {
                    Action::Jump(DoneForever)
                }
            }),

            // We are done.
            DoneForever => break TINFLStatus::Done,

            // Anything else indicates failure.
            // BadZlibHeader | BadRawLength | BlockTypeUnexpected | DistanceOutOfBounds |
            // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen |
            // InvalidDist | InvalidCodeLen
            _ => break TINFLStatus::Failed,
        };
    };

    let in_undo = if status != TINFLStatus::NeedsMoreInput &&
        status != TINFLStatus::FailedCannotMakeProgress
    {
        undo_bytes(&mut l, (in_buf.len() - in_iter.len()) as u32) as usize
    } else {
        0
    };

    r.state = state.into();
    r.bit_buf = l.bit_buf;
    r.num_bits = l.num_bits;
    r.dist = l.dist;
    r.counter = l.counter;
    r.num_extra = l.num_extra;
    r.dist_from_out_buf_start = l.dist_from_out_buf_start;

    r.bit_buf &= (((1 as BitBuffer) << r.num_bits) - 1) as BitBuffer;

    // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if
    // requested.
    let need_adler = flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0;
    if need_adler && status as i32 >= 0 {
        let out_buf_pos = out_buf.position();
        r.check_adler32 = update_adler32(
            r.check_adler32,
            &out_buf.get_ref()[out_buf_start_pos..out_buf_pos],
        );

        // disabled so that random input from fuzzer would not be rejected early,
        // before it has a chance to reach interesting parts of code
        if !cfg!(fuzzing) {
            // Once we are done, check if the checksum matches with the one provided in the zlib header.
            if status == TINFLStatus::Done && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 &&
                r.check_adler32 != r.z_adler32
            {
                status = TINFLStatus::Adler32Mismatch;
            }
        }
    }

    // NOTE: Status here and in miniz_tester doesn't seem to match.
    (
        status,
        in_buf.len() - in_iter.len() - in_undo,
        out_buf.position() - out_buf_start_pos,
    )
}


#[cfg(test)]
mod test {
    use super::*;
    //use std::io::Cursor;

    //TODO: Fix these.

    fn tinfl_decompress_oxide<'i>(
        r: &mut DecompressorOxide,
        input_buffer: &'i [u8],
        output_buffer: &mut [u8],
        flags: u32,
    ) -> (TINFLStatus, &'i [u8], usize) {
        let (status, in_pos, out_pos) =
            decompress(r, input_buffer, &mut Cursor::new(output_buffer), flags);
        (status, &input_buffer[in_pos..], out_pos)
    }

    #[test]
    fn decompress_zlib() {
        let encoded = [
            120, 156, 243, 72, 205, 201, 201, 215, 81, 168,
            202, 201,  76,  82,  4,   0,  27, 101,  4,  19,
        ];
        let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER;

        let mut b = DecompressorOxide::new();
        const LEN: usize = 32;
        let mut b_buf = vec![0; LEN];

        // This should fail with the out buffer being to small.
        let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);

        assert_eq!(b_status.0, TINFLStatus::Failed);

        let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;

        b = DecompressorOxide::new();

        // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail.
        let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);

        assert_eq!(b_buf[..b_status.2], b"Hello, zlib!"[..]);
        assert_eq!(b_status.0, TINFLStatus::Done);
    }

    #[test]
    fn raw_block() {
        const LEN: usize = 64;

        let text = b"Hello, zlib!";
        let encoded = {
            let len = text.len();
            let notlen = !len;
            let mut encoded =
                vec![1, len as u8, (len >> 8) as u8, notlen as u8, (notlen >> 8) as u8];
            encoded.extend_from_slice(&text[..]);
            encoded
        };

        //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER |
        let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;

        let mut b = DecompressorOxide::new();

        let mut b_buf = vec![0; LEN];

        let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);
        assert_eq!(b_buf[..b_status.2], text[..]);
        assert_eq!(b_status.0, TINFLStatus::Done);
    }

    fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) {
        let ret = table.lookup(bit_buf).unwrap();
        (ret.0 & 511, ret.1)
    }

    #[test]
    fn fixed_table_lookup() {
        let mut d = DecompressorOxide::new();
        d.block_type = 1;
        start_static_table(&mut d);
        let mut l = LocalVars {
            bit_buf: d.bit_buf,
            num_bits: d.num_bits,
            dist: d.dist,
            counter: d.counter,
            num_extra: d.num_extra,
            dist_from_out_buf_start: d.dist_from_out_buf_start,
        };
        init_tree(&mut d, &mut l);
        let llt = &d.tables[LITLEN_TABLE];
        let dt = &d.tables[DIST_TABLE];
        assert_eq!(masked_lookup(llt, 0b00001100), (0, 8));
        assert_eq!(masked_lookup(llt, 0b00011110), (72, 8));
        assert_eq!(masked_lookup(llt, 0b01011110), (74, 8));
        assert_eq!(masked_lookup(llt, 0b11111101), (143, 8));
        assert_eq!(masked_lookup(llt, 0b000010011), (144, 9));
        assert_eq!(masked_lookup(llt, 0b111111111), (255, 9));
        assert_eq!(masked_lookup(llt, 0b00000000), (256, 7));
        assert_eq!(masked_lookup(llt, 0b1110100), (279, 7));
        assert_eq!(masked_lookup(llt, 0b00000011), (280, 8));
        assert_eq!(masked_lookup(llt, 0b11100011), (287, 8));

        assert_eq!(masked_lookup(dt, 0), (0, 5));
        assert_eq!(masked_lookup(dt, 20), (5, 5));
    }

    fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) {
        let mut r = DecompressorOxide::default();
        let mut output_buf = vec![0; 1024 * 32];
        let mut out_cursor = Cursor::new(output_buf.as_mut_slice());
        let flags = if zlib {
            inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER
        } else {
            0
        } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | TINFL_FLAG_HAS_MORE_INPUT;
        let (d_status, _in_bytes, _out_bytes) =
            decompress(&mut r, input, &mut out_cursor, flags);
        assert_eq!(expected_status, d_status);
        assert_eq!(expected_state, r.state);
    }

    #[test]
    fn bogus_input() {
        use self::check_result as cr;
        const F: TINFLStatus = TINFLStatus::Failed;
        const OK: TINFLStatus = TINFLStatus::Done;
        // Bad CM.
        cr(&[0x77, 0x85], F, State::BadZlibHeader, true);
        // Bad window size (but check is correct).
        cr(&[0x88, 0x98], F, State::BadZlibHeader, true);
        // Bad check bits.
        cr(&[0x78, 0x98], F, State::BadZlibHeader, true);

        // Too many code lengths. (From inflate library issues)
        cr(
            b"M\xff\xffM*\xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM",
            F,
            State::BadTotalSymbols,
            false,
        );
        // Bad CLEN (also from inflate library issues)
        cr(
            b"\xdd\xff\xff*M\x94ffffffffff",
            F,
            State::BadTotalSymbols,
            false,
        );

        // Port of inflate coverage tests from zlib-ng
        // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c
        let c = |a, b, c| cr(a, b, c, false);

        // Invalid uncompressed/raw block length.
        c(&[0,0,0,0,0], F, State::BadRawLength);
        // Ok empty uncompressed block.
        c(&[3, 0], OK, State::DoneForever);
        // Invalid block type.
        c(&[6], F, State::BlockTypeUnexpected);
        // Ok uncompressed block.
        c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever);
        // Too many litlens, we handle this later than zlib, so this test won't
        // give the same result.
        //        c(&[0xfc, 0, 0], F, State::BadTotalSymbols);
        // Invalid set of code lengths - TODO Check if this is the correct error for this.
        c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols);
        // Invalid repeat in list of code lengths.
        // (Try to repeat a non-existant code.)
        c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup);
        // Missing end of block code (should we have a separate error for this?) - fails on futher input
        //    c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols);
        // Invalid set of literals/lengths
        c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0], F, State::BadTotalSymbols);
        // Invalid set of distances _ needsmoreinput
        // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols);
        // Invalid distance code
        c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist);

        // Distance refers to position before the start
        c(&[0x0c, 0xc0 ,0x81 ,0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], F, State::DistanceOutOfBounds);

        // Trailer
        // Bad gzip trailer checksum GZip header not handled by miniz_oxide
        //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false)
        // Bad gzip trailer length
        //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false)
    }

    #[test]
    fn empty_output_buffer_non_wrapping() {
        let encoded = [
            120, 156, 243, 72, 205, 201, 201, 215, 81, 168,
            202, 201,  76, 82,   4,   0,  27, 101,  4,  19,
        ];
        let flags = TINFL_FLAG_COMPUTE_ADLER32 |
            TINFL_FLAG_PARSE_ZLIB_HEADER |
            TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
        let mut r = DecompressorOxide::new();
        let mut output_buf = vec![];
        let mut out_cursor = Cursor::new(output_buf.as_mut_slice());
        // Check that we handle an empty buffer properly and not panicking.
        // https://github.com/Frommi/miniz_oxide/issues/23
        let res = decompress(&mut r, &encoded, &mut out_cursor, flags);
        assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0));
    }

    #[test]
    fn empty_output_buffer_wrapping() {
        let encoded =  [
            0x73, 0x49, 0x4d, 0xcb,
            0x49, 0x2c, 0x49, 0x55,
            0x00, 0x11, 0x00
        ];
        let flags = TINFL_FLAG_COMPUTE_ADLER32;
        let mut r = DecompressorOxide::new();
        let mut output_buf = vec![];
        let mut out_cursor = Cursor::new(output_buf.as_mut_slice());
        // Check that we handle an empty buffer properly and not panicking.
        // https://github.com/Frommi/miniz_oxide/issues/23
        let res = decompress(&mut r, &encoded, &mut out_cursor, flags);
        assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0));
    }
}