1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
use crate::ast::*;
use pest::iterators::{Pair, Pairs};
use pest::Parser;
use pest_derive::Parser;

#[derive(Parser)]
#[grammar = "grammar.pest"]
/// The name stands for "Mini-TT's Parser"
struct MiniParser;

// Tik♂Tok on the clock but the party don't stop!
type Tok<'a> = Pair<'a, Rule>;
type Tik<'a> = Pairs<'a, Rule>;

/// Parse a string into an optional expression
pub fn parse_str(input: &str) -> Result<Expression, String> {
    Ok(expression_to_expression(
        MiniParser::parse(Rule::expression, input)
            .map_err(|err| format!("Parse failed at:{}", err))?
            .next()
            .unwrap(),
    ))
}

/// Parse a string into an optional expression and print error to stderr
#[inline]
pub fn parse_str_err_printed(code: &str) -> Result<Expression, ()> {
    parse_str(code).map_err(|err| eprintln!("{}", err))
}

macro_rules! next_rule {
    ($inner:expr, $rule_name:ident, $function:ident) => {{
        let token = $inner.next().unwrap();
        debug_assert_eq!(token.as_rule(), Rule::$rule_name);
        $function(token)
    }};
}

#[inline]
fn next_expression(inner: &mut Tik) -> Expression {
    next_rule!(inner, expression, expression_to_expression)
}

#[inline]
fn next_atom(inner: &mut Tik) -> Expression {
    next_rule!(inner, atom, atom_to_expression)
}

#[inline]
fn next_pattern(inner: &mut Tik) -> Pattern {
    next_rule!(inner, pattern, pattern_to_pattern)
}

#[inline]
fn next_constructor_name(inner: &mut Tik) -> String {
    next_rule!(inner, constructor_name, identifier_to_name)
}

#[inline]
fn end_of_rule(inner: &mut Tik) {
    debug_assert_eq!(inner.next(), None)
}

/// ```ignore
/// expression =
///  { declaration
///  | const_declaration
///  | application
///  | function_type
///  | pair_type
///  | first
///  | second
///  | pair
///  | atom
///  }
/// ```
pub fn expression_to_expression(rules: Tok) -> Expression {
    let the_rule: Tok = rules.into_inner().next().unwrap();
    match the_rule.as_rule() {
        Rule::declaration => declaration_to_expression(the_rule),
        Rule::const_declaration => const_declaration_to_expression(the_rule),
        Rule::application => application_to_expression(the_rule),
        Rule::function_type => function_type_to_expression(the_rule),
        Rule::pair_type => pair_type_to_expression(the_rule),
        Rule::first => first_to_expression(the_rule),
        Rule::second => second_to_expression(the_rule),
        Rule::pair => pair_to_expression(the_rule),
        Rule::atom => atom_to_expression(the_rule),
        _ => unreachable!(),
    }
}

/// ```ignore
/// first = { atom ~ ".1" }
/// ```
pub fn first_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let pair = next_atom(&mut inner);
    end_of_rule(&mut inner);
    Expression::First(Box::new(pair))
}

/// ```ignore
/// function_type = { atom ~ "->" ~ expression }
/// ```
pub fn function_type_to_expression(the_rule: Tok) -> Expression {
    let (input, output) = atom_and_expression_to_tuple(the_rule);
    Expression::Pi((Pattern::Unit, Box::new(input)), Box::new(output))
}

/// ```ignore
/// multiplication = _{ "*" | "\\times" | "×" }
/// pair_type = { atom ~ multiplication ~ expression }
/// ```
pub fn pair_type_to_expression(the_rule: Tok) -> Expression {
    let (first, second) = atom_and_expression_to_tuple(the_rule);
    Expression::Sigma((Pattern::Unit, Box::new(first)), Box::new(second))
}

/// Helper, extracted.
pub fn atom_and_expression_to_tuple(the_rule: Tok) -> (Expression, Expression) {
    let mut inner: Tik = the_rule.into_inner();
    let input = next_atom(&mut inner);
    let output = next_expression(&mut inner);
    end_of_rule(&mut inner);
    (input, output)
}

/// ```ignore
/// second = { atom ~ ".2" }
/// ```
pub fn second_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let pair = next_atom(&mut inner);
    end_of_rule(&mut inner);
    Expression::Second(Box::new(pair))
}

/// ```ignore
/// pair = { atom ~ "," ~ expression }
/// ```
pub fn pair_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let first = next_atom(&mut inner);
    let second = next_expression(&mut inner);
    end_of_rule(&mut inner);
    Expression::Pair(Box::new(first), Box::new(second))
}

/// ```ignore
/// application = { atom ~ expression }
/// ```
pub fn application_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let function = next_atom(&mut inner);
    let argument = next_expression(&mut inner);
    end_of_rule(&mut inner);
    Expression::Application(Box::new(function), Box::new(argument))
}

/// ```ignore
/// prefix_parameter = { "(" ~ typed_pattern ~ ")" }
/// prefix_parameters = { prefix_parameter* }
/// ```
pub fn prefix_parameters_to_vec(the_rule: Tok) -> Vec<Typed> {
    let mut map: Vec<Typed> = Default::default();
    for prefix_parameter in the_rule.into_inner() {
        let mut inner: Tik = prefix_parameter.into_inner();
        let pattern = next_pattern(&mut inner);
        let parameter_type = next_expression(&mut inner);
        map.push((pattern, Box::new(parameter_type)));
    }
    map
}

/// ```ignore
/// declaration =
///  { let_or_rec?
///  ~ pattern
///  ~ prefix_parameters
///  ~ ":" ~ expression
///  ~ "=" ~ expression
///  ~ ";" ~ expression?
///  }
/// ```
pub fn declaration_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let let_or_rec_rule = inner.next().unwrap();
    let rec = match let_or_rec_rule.as_str() {
        "let" => false,
        "rec" => true,
        _ => unreachable!(),
    };
    let name = next_pattern(&mut inner);
    let prefix_parameters = next_rule!(inner, prefix_parameters, prefix_parameters_to_vec);
    let signature = next_expression(&mut inner);
    let body = next_expression(&mut inner);
    let rest = inner
        .next()
        .map(expression_to_expression)
        .unwrap_or(Expression::Void);
    end_of_rule(&mut inner);
    let declaration_type = if rec {
        DeclarationType::Recursive
    } else {
        DeclarationType::Simple
    };
    let declaration = Declaration::new(name, prefix_parameters, signature, body, declaration_type);
    Expression::Declaration(Box::new(declaration), Box::new(rest))
}

/// ```ignore
/// const_declaration =
///  { "const"
///  ~ pattern
///  ~ "=" ~ expression
///  ~ ";" ~ expression?
///  }
/// ```
pub fn const_declaration_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let name = next_pattern(&mut inner);
    let body = next_expression(&mut inner);
    let rest = inner
        .next()
        .map(expression_to_expression)
        .unwrap_or(Expression::Void);
    end_of_rule(&mut inner);
    Expression::Constant(name, Box::new(body), Box::new(rest))
}

/// ```ignore
/// atom =
///   { universe
///   | constructor
///   | variable
///   | split
///   | sum
///   | one
///   | unit
///   | pi_type
///   | sigma_type
///   | lambda_expression
///   | "(" ~ expression ~ ")"
///   }
/// ```
pub fn atom_to_expression(rules: Tok) -> Expression {
    let the_rule: Tok = rules.into_inner().next().unwrap();
    match the_rule.as_rule() {
        Rule::universe => Expression::Type,
        Rule::constructor => constructor_to_expression(the_rule),
        Rule::variable => variable_to_expression(the_rule),
        Rule::split => Expression::Split(choices_to_tree_map(the_rule)),
        Rule::sum => Expression::Sum(branches_to_tree_map(the_rule)),
        Rule::one => Expression::One,
        Rule::unit => Expression::Unit,
        Rule::pi_type => pi_type_to_expression(the_rule),
        Rule::sigma_type => sigma_type_to_expression(the_rule),
        Rule::lambda_expression => lambda_expression_to_expression(the_rule),
        Rule::expression => expression_to_expression(the_rule),
        _ => unreachable!(),
    }
}

/// ```ignore
/// branches = _{ "{" ~ (constructor ~ ("|" ~ constructor)*)? ~ "}" }
/// constructor = { constructor_name ~ expression }
/// ```
pub fn branches_to_tree_map(the_rule: Tok) -> Branch {
    let mut map: Branch = Default::default();
    for constructor in the_rule.into_inner() {
        let mut inner: Tik = constructor.into_inner();
        let constructor_name = next_constructor_name(&mut inner);
        let expression = inner
            .next()
            .map(expression_to_expression)
            .unwrap_or(Expression::One);
        map.insert(constructor_name, Box::new(expression));
        end_of_rule(&mut inner);
    }
    map
}

/// ```ignore
/// choices = _{ "{" ~ (pattern_match ~ ("|" ~ pattern_match)*)? ~ "}" }
/// pattern_match = { constructor_name ~ maybe_pattern ~ "=>" ~ expression }
/// ```
pub fn choices_to_tree_map(the_rule: Tok) -> Branch {
    let mut map: Branch = Default::default();
    for pattern_match in the_rule.into_inner() {
        let mut inner: Tik = pattern_match.into_inner();
        let constructor_name = next_constructor_name(&mut inner);
        let pattern = next_rule!(inner, maybe_pattern, maybe_pattern_to_pattern);
        let expression = next_expression(&mut inner);
        map.insert(
            constructor_name,
            Box::new(Expression::Lambda(pattern, None, Box::new(expression))),
        );
    }
    map
}

/// ```ignore
/// pi = _{ Pi unicode | "\\Pi" }
/// pi_type = { pi ~ typed_abstraction }
/// ```
pub fn pi_type_to_expression(the_rule: Tok) -> Expression {
    let (first_name, first_type, second) = typed_abstraction_to_tuple(the_rule);
    Expression::Pi((first_name, Box::new(first_type)), Box::new(second))
}

/// ```ignore
/// pi = _{ Pi unicode | "\\Pi" }
/// pi_type = { pi ~ typed_abstraction }
/// ```
pub fn sigma_type_to_expression(the_rule: Tok) -> Expression {
    let (input_name, input_type, output) = typed_abstraction_to_tuple(the_rule);
    Expression::Sigma((input_name, Box::new(input_type)), Box::new(output))
}

/// ```ignore
/// typed_abstraction = _{ pattern ~ ":" ~ expression ~ "." ~ expression }
/// ```
pub fn typed_abstraction_to_tuple(the_rule: Tok) -> (Pattern, Expression, Expression) {
    let mut inner: Tik = the_rule.into_inner();
    let input_name = next_pattern(&mut inner);
    let input_type = next_expression(&mut inner);
    let output = next_expression(&mut inner);
    end_of_rule(&mut inner);
    (input_name, input_type, output)
}

/// ```ignore
/// atom_pattern = { identifier | meta_var | "(" ~ pattern ~ ")" }
/// pattern = { pair_pattern | atom_pattern }
/// ```
pub fn atom_pattern_to_pattern(the_rule: Tok) -> Pattern {
    let rule: Tok = the_rule.into_inner().next().unwrap();
    match rule.as_rule() {
        Rule::identifier => Pattern::Var(identifier_to_name(rule)),
        Rule::meta_var => Pattern::Unit,
        Rule::pattern => pattern_to_pattern(rule),
        _ => unreachable!(),
    }
}

/// ```ignore
/// pair_pattern = { atom_pattern ~ "," ~ pattern }
/// pattern = { pair_pattern | atom_pattern }
/// ```
pub fn pattern_to_pattern(the_rule: Tok) -> Pattern {
    let rule: Tok = the_rule.into_inner().next().unwrap();
    match rule.as_rule() {
        Rule::pair_pattern => {
            let mut inner: Tik = rule.into_inner();
            let first = next_rule!(inner, atom_pattern, atom_pattern_to_pattern);
            let second = next_pattern(&mut inner);
            end_of_rule(&mut inner);
            Pattern::Pair(Box::new(first), Box::new(second))
        }
        Rule::atom_pattern => atom_pattern_to_pattern(rule),
        _ => unreachable!(),
    }
}

/// ```ignore
/// lambda = _{ lambda unicode | "\\lambda" }
/// lambda_expression = { lambda ~ pattern ~ "." ~ expression }
/// ```
pub fn lambda_expression_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let parameter = next_pattern(&mut inner);
    let body = next_expression(&mut inner);
    end_of_rule(&mut inner);
    Expression::Lambda(parameter, None, Box::new(body))
}

/// Constructor as an expression
pub fn constructor_to_expression(the_rule: Tok) -> Expression {
    let (constructor, argument) = constructor_to_tuple(the_rule);
    Expression::Constructor(constructor, Box::new(argument))
}

/// ```ignore
/// constructor_name = @{ ASCII_ALPHA_UPPER ~ identifier? }
/// constructor = { constructor_name ~ expression }
/// ```
pub fn constructor_to_tuple(the_rule: Tok) -> (String, Expression) {
    let mut inner: Tik = the_rule.into_inner();
    let constructor = next_constructor_name(&mut inner);
    let argument = inner
        .next()
        .map(expression_to_expression)
        .unwrap_or(Expression::Unit);
    end_of_rule(&mut inner);
    (constructor, argument)
}

/// ```ignore
/// maybe_pattern = { pattern? }
/// ```
pub fn maybe_pattern_to_pattern(the_rule: Tok) -> Pattern {
    let mut inner: Tik = the_rule.into_inner();
    let pattern = inner
        .next()
        .map(pattern_to_pattern)
        .unwrap_or(Pattern::Unit);
    end_of_rule(&mut inner);
    pattern
}

/// ```ignore
/// variable = { identifier }
/// ```
pub fn variable_to_expression(the_rule: Tok) -> Expression {
    let mut inner: Tik = the_rule.into_inner();
    let name = next_rule!(inner, identifier, identifier_to_name);
    end_of_rule(&mut inner);
    Expression::Var(name)
}

/// ```ignore
/// identifier = @{ !"let" ~ !"rec" ~ !"0" ~ !"1" ~ character+ }
/// ```
pub fn identifier_to_name(rule: Tok) -> String {
    rule.as_span().as_str().to_string()
}

#[cfg(test)]
mod tests {
    use crate::parser::parse_str_err_printed;

    #[cfg(not(feature = "pretty"))]
    fn successful_test_case(code: &str) {
        let expr = parse_str_err_printed(code).unwrap();
        println!("{:?}", expr);
    }

    #[cfg(feature = "pretty")]
    fn successful_test_case(code: &str) {
        println!("========= source ===========");
        println!("{}", code);
        println!("========= result ===========");
        let expr = parse_str_err_printed(code).unwrap();
        print!("{}", expr);
        let code = format!("{}", expr);
        println!("========= double ===========");
        print!("{}", parse_str_err_printed(code.as_str()).unwrap());
        println!("========= finish ===========\n");
    }

    #[test]
    fn simple_parse() {
        successful_test_case("let unit_one : 1 = 0;\nlet type_one : U = unit_one;");
        successful_test_case("let application : k = f e;");
        successful_test_case("let pair_first_second : k = ((x, y).1).2;");
        successful_test_case("let sigma_type : \\Sigma x : x_type . y = x, y;");
        successful_test_case("let constructor : C k = C e;");
        successful_test_case("let pi_lambda : \\Pi a : b . c = \\lambda a . expr;");
        successful_test_case("let pat, pat2 : \\Pi _ : b . c = \\lambda _ . expr;");
    }

    #[test]
    fn no_reparse() {
        successful_no_reparse("let function : sum {C e} = split {C _ => e};");
        successful_no_reparse("let function (x : a) : bla = rua;");
    }

    fn successful_no_reparse(code: &str) {
        println!("{}", parse_str_err_printed(code).unwrap());
    }
}