1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Miniscript
// Written in 2020 by
//     Dr Maxim Orlovsky <orlovsky@pandoracore.com>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Miniscript Iterators
//!
//! Iterators for Miniscript with special functions for iterating
//! over Public Keys, Public Key Hashes or both.
use core::ops::Deref;

use sync::Arc;

use super::decode::Terminal;
use super::{Miniscript, MiniscriptKey, ScriptContext};
use crate::prelude::*;

/// Iterator-related extensions for [Miniscript]
impl<Pk: MiniscriptKey, Ctx: ScriptContext> Miniscript<Pk, Ctx> {
    /// Creates a new [Iter] iterator that will iterate over all [Miniscript] items within
    /// AST by traversing its branches. For the specific algorithm please see
    /// [Iter::next] function.
    pub fn iter(&self) -> Iter<Pk, Ctx> {
        Iter::new(self)
    }

    /// Creates a new [PkIter] iterator that will iterate over all plain public keys (and not
    /// key hash values) present in [Miniscript] items within AST by traversing all its branches.
    /// For the specific algorithm please see [PkIter::next] function.
    pub fn iter_pk(&self) -> PkIter<Pk, Ctx> {
        PkIter::new(self)
    }

    /// Enumerates all child nodes of the current AST node (`self`) and returns a `Vec` referencing
    /// them.
    pub fn branches(&self) -> Vec<&Miniscript<Pk, Ctx>> {
        match self.node {
            Terminal::PkK(_) | Terminal::PkH(_) | Terminal::RawPkH(_) | Terminal::Multi(_, _) => {
                vec![]
            }

            Terminal::Alt(ref node)
            | Terminal::Swap(ref node)
            | Terminal::Check(ref node)
            | Terminal::DupIf(ref node)
            | Terminal::Verify(ref node)
            | Terminal::NonZero(ref node)
            | Terminal::ZeroNotEqual(ref node) => vec![node],

            Terminal::AndV(ref node1, ref node2)
            | Terminal::AndB(ref node1, ref node2)
            | Terminal::OrB(ref node1, ref node2)
            | Terminal::OrD(ref node1, ref node2)
            | Terminal::OrC(ref node1, ref node2)
            | Terminal::OrI(ref node1, ref node2) => vec![node1, node2],

            Terminal::AndOr(ref node1, ref node2, ref node3) => vec![node1, node2, node3],

            Terminal::Thresh(_, ref node_vec) => node_vec.iter().map(Arc::deref).collect(),

            _ => vec![],
        }
    }

    /// Returns child node with given index, if any
    pub fn get_nth_child(&self, n: usize) -> Option<&Miniscript<Pk, Ctx>> {
        match (n, &self.node) {
            (0, &Terminal::Alt(ref node))
            | (0, &Terminal::Swap(ref node))
            | (0, &Terminal::Check(ref node))
            | (0, &Terminal::DupIf(ref node))
            | (0, &Terminal::Verify(ref node))
            | (0, &Terminal::NonZero(ref node))
            | (0, &Terminal::ZeroNotEqual(ref node))
            | (0, &Terminal::AndV(ref node, _))
            | (0, &Terminal::AndB(ref node, _))
            | (0, &Terminal::OrB(ref node, _))
            | (0, &Terminal::OrD(ref node, _))
            | (0, &Terminal::OrC(ref node, _))
            | (0, &Terminal::OrI(ref node, _))
            | (1, &Terminal::AndV(_, ref node))
            | (1, &Terminal::AndB(_, ref node))
            | (1, &Terminal::OrB(_, ref node))
            | (1, &Terminal::OrD(_, ref node))
            | (1, &Terminal::OrC(_, ref node))
            | (1, &Terminal::OrI(_, ref node))
            | (0, &Terminal::AndOr(ref node, _, _))
            | (1, &Terminal::AndOr(_, ref node, _))
            | (2, &Terminal::AndOr(_, _, ref node)) => Some(node),

            (n, &Terminal::Thresh(_, ref node_vec)) => node_vec.get(n).map(|x| &**x),

            _ => None,
        }
    }

    /// Returns `Option::Some` with cloned n'th public key from the current miniscript item,
    /// if any. Otherwise returns `Option::None`.
    ///
    /// NB: The function analyzes only single miniscript item and not any of its descendants in AST.
    pub fn get_nth_pk(&self, n: usize) -> Option<Pk> {
        match (&self.node, n) {
            (&Terminal::PkK(ref key), 0) | (&Terminal::PkH(ref key), 0) => Some(key.clone()),
            (&Terminal::Multi(_, ref keys), _) | (&Terminal::MultiA(_, ref keys), _) => {
                keys.get(n).cloned()
            }
            _ => None,
        }
    }
}

/// Iterator for traversing all [Miniscript] miniscript AST references starting from some specific
/// node which constructs the iterator via [Miniscript::iter] method.
pub struct Iter<'a, Pk: MiniscriptKey, Ctx: ScriptContext> {
    next: Option<&'a Miniscript<Pk, Ctx>>,
    // Here we store vec of path elements, where each element is a tuple, consisting of:
    // 1. Miniscript node on the path
    // 2. Index of the current branch
    path: Vec<(&'a Miniscript<Pk, Ctx>, usize)>,
}

impl<'a, Pk: MiniscriptKey, Ctx: ScriptContext> Iter<'a, Pk, Ctx> {
    fn new(miniscript: &'a Miniscript<Pk, Ctx>) -> Self {
        Iter {
            next: Some(miniscript),
            path: vec![],
        }
    }
}

impl<'a, Pk: MiniscriptKey, Ctx: ScriptContext> Iterator for Iter<'a, Pk, Ctx> {
    type Item = &'a Miniscript<Pk, Ctx>;

    /// First, the function returns `self`, then the first child of the self (if any),
    /// then proceeds to the child of the child — down to a leaf of the tree in its first branch.
    /// When the leaf is reached, it goes in the reverse direction on the same branch until it
    /// founds a first branching node that had more than a single branch and returns it, traversing
    /// it with the same algorithm again.
    ///
    /// For example, for the given AST
    /// ```text
    /// A --+--> B -----> C --+--> D -----> E
    ///     |                 |
    ///     |                 +--> F
    ///     |                 |
    ///     |                 +--> G --+--> H
    ///     |                          |
    ///     |                          +--> I -----> J
    ///     +--> K
    /// ```
    /// `Iter::next()` will iterate over the nodes in the following order:
    /// `A > B > C > D > E > F > G > H > I > J > K`
    ///
    /// To enumerate the branches iterator uses [Miniscript::branches] function.
    fn next(&mut self) -> Option<Self::Item> {
        let mut curr = self.next;
        if curr.is_none() {
            while let Some((node, child)) = self.path.pop() {
                curr = node.get_nth_child(child);
                if curr.is_some() {
                    self.path.push((node, child + 1));
                    break;
                }
            }
        }
        if let Some(node) = curr {
            self.next = node.get_nth_child(0);
            self.path.push((node, 1));
        }
        curr
    }
}

/// Iterator for traversing all [MiniscriptKey]'s in AST starting from some specific node which
/// constructs the iterator via [Miniscript::iter_pk] method.
pub struct PkIter<'a, Pk: MiniscriptKey, Ctx: ScriptContext> {
    node_iter: Iter<'a, Pk, Ctx>,
    curr_node: Option<&'a Miniscript<Pk, Ctx>>,
    key_index: usize,
}

impl<'a, Pk: MiniscriptKey, Ctx: ScriptContext> PkIter<'a, Pk, Ctx> {
    fn new(miniscript: &'a Miniscript<Pk, Ctx>) -> Self {
        let mut iter = Iter::new(miniscript);
        PkIter {
            curr_node: iter.next(),
            node_iter: iter,
            key_index: 0,
        }
    }
}

impl<'a, Pk: MiniscriptKey, Ctx: ScriptContext> Iterator for PkIter<'a, Pk, Ctx> {
    type Item = Pk;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.curr_node {
                None => break None,
                Some(node) => match node.get_nth_pk(self.key_index) {
                    None => {
                        self.curr_node = self.node_iter.next();
                        self.key_index = 0;
                        continue;
                    }
                    Some(pk) => {
                        self.key_index += 1;
                        break Some(pk);
                    }
                },
            }
        }
    }
}

// Module is public since it export testcase generation which may be used in
// dependent libraries for their own tasts based on Miniscript AST
#[cfg(test)]
pub mod test {
    use bitcoin;
    use bitcoin::hashes::{hash160, ripemd160, sha256, sha256d, Hash};
    use bitcoin::secp256k1;

    use super::Miniscript;
    use crate::miniscript::context::Segwitv0;

    pub type TestData = (
        Miniscript<bitcoin::PublicKey, Segwitv0>,
        Vec<bitcoin::PublicKey>,
        Vec<hash160::Hash>,
        bool, // Indicates that the top-level contains public key or hashes
    );

    pub fn gen_secp_pubkeys(n: usize) -> Vec<secp256k1::PublicKey> {
        let mut ret = Vec::with_capacity(n);
        let secp = secp256k1::Secp256k1::new();
        let mut sk = [0; 32];

        for i in 1..n + 1 {
            sk[0] = i as u8;
            sk[1] = (i >> 8) as u8;
            sk[2] = (i >> 16) as u8;

            ret.push(secp256k1::PublicKey::from_secret_key(
                &secp,
                &secp256k1::SecretKey::from_slice(&sk[..]).unwrap(),
            ));
        }
        ret
    }

    pub fn gen_bitcoin_pubkeys(n: usize, compressed: bool) -> Vec<bitcoin::PublicKey> {
        gen_secp_pubkeys(n)
            .into_iter()
            .map(|inner| bitcoin::PublicKey { inner, compressed })
            .collect()
    }

    pub fn gen_testcases() -> Vec<TestData> {
        let k = gen_bitcoin_pubkeys(10, true);
        let _h: Vec<hash160::Hash> = k
            .iter()
            .map(|pk| hash160::Hash::hash(&pk.to_bytes()))
            .collect();

        let preimage = vec![0xab as u8; 32];
        let sha256_hash = sha256::Hash::hash(&preimage);
        let sha256d_hash_rev = sha256d::Hash::hash(&preimage);
        let mut sha256d_hash_bytes = sha256d_hash_rev.clone().into_inner();
        sha256d_hash_bytes.reverse();
        let sha256d_hash = sha256d::Hash::from_inner(sha256d_hash_bytes);
        let hash160_hash = hash160::Hash::hash(&preimage);
        let ripemd160_hash = ripemd160::Hash::hash(&preimage);

        vec![
            (ms_str!("after({})", 1000), vec![], vec![], false),
            (ms_str!("older({})", 1000), vec![], vec![], false),
            (ms_str!("sha256({})", sha256_hash), vec![], vec![], false),
            (ms_str!("hash256({})", sha256d_hash), vec![], vec![], false),
            (ms_str!("hash160({})", hash160_hash), vec![], vec![], false),
            (
                ms_str!("ripemd160({})", ripemd160_hash),
                vec![],
                vec![],
                false,
            ),
            (ms_str!("c:pk_k({})", k[0]), vec![k[0]], vec![], true),
            (ms_str!("c:pk_h({})", k[0]), vec![k[0]], vec![], true),
            (
                ms_str!("and_v(vc:pk_k({}),c:pk_h({}))", k[0], k[1]),
                vec![k[0], k[1]],
                vec![],
                false,
            ),
            (
                ms_str!("and_b(c:pk_k({}),sjtv:sha256({}))", k[0], sha256_hash),
                vec![k[0]],
                vec![],
                false,
            ),
            (
                ms_str!(
                    "andor(c:pk_k({}),jtv:sha256({}),c:pk_h({}))",
                    k[1],
                    sha256_hash,
                    k[2]
                ),
                vec![k[1], k[2]],
                vec![],
                false,
            ),
            (
                ms_str!("multi(3,{},{},{},{},{})", k[9], k[8], k[7], k[0], k[1]),
                vec![k[9], k[8], k[7], k[0], k[1]],
                vec![],
                true,
            ),
            (
                ms_str!(
                    "thresh(3,c:pk_k({}),sc:pk_k({}),sc:pk_k({}),sc:pk_k({}),sc:pk_k({}))",
                    k[2],
                    k[3],
                    k[4],
                    k[5],
                    k[6]
                ),
                vec![k[2], k[3], k[4], k[5], k[6]],
                vec![],
                false,
            ),
            (
                ms_str!(
                    "or_d(multi(2,{},{}),and_v(v:multi(2,{},{}),older(10000)))",
                    k[6],
                    k[7],
                    k[8],
                    k[9]
                ),
                vec![k[6], k[7], k[8], k[9]],
                vec![],
                false,
            ),
            (
                ms_str!(
                    "or_d(multi(3,{},{},{},{},{}),\
                      and_v(v:thresh(2,c:pk_h({}),\
                      ac:pk_h({}),ac:pk_h({})),older(10000)))",
                    k[0],
                    k[2],
                    k[4],
                    k[6],
                    k[9],
                    k[1],
                    k[3],
                    k[5]
                ),
                vec![k[0], k[2], k[4], k[6], k[9], k[1], k[3], k[5]],
                vec![],
                false,
            ),
        ]
    }

    #[test]
    fn find_keys() {
        gen_testcases().into_iter().for_each(|(ms, k, _, _)| {
            assert_eq!(ms.iter_pk().collect::<Vec<bitcoin::PublicKey>>(), k);
        })
    }
}