1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
// Miniscript
// Written in 2019 by
//     Sanket Kanjular and Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Interpreter
//!
//! Provides a Miniscript-based script interpreter which can be used to
//! iterate over the set of conditions satisfied by a spending transaction,
//! assuming that the spent coin was descriptor controlled.
//!

use bitcoin::hashes::{hash160, ripemd160, sha256, sha256d};
use bitcoin::util::bip143;
use bitcoin::{self, secp256k1};
use miniscript::context::NoChecks;
use miniscript::ScriptContext;
use Miniscript;
use Terminal;
use {BitcoinSig, Descriptor, NullCtx, ToPublicKey};

mod error;
mod inner;
mod stack;

pub use self::error::Error;
use self::stack::Stack;

/// An iterable Miniscript-structured representation of the spending of a coin
pub struct Interpreter<'txin> {
    inner: inner::Inner,
    stack: Stack<'txin>,
    script_code: bitcoin::Script,
    age: u32,
    height: u32,
}

impl<'txin> Interpreter<'txin> {
    /// Constructs an interpreter from the data of a spending transaction
    ///
    /// Accepts a signature-validating function. If you are willing to trust
    /// that ECSDA signatures are valid, this can be set to the constant true
    /// function; otherwise, it should be a closure containing a sighash and
    /// secp context, which can actually verify a given signature.
    pub fn from_txdata(
        spk: &bitcoin::Script,
        script_sig: &'txin bitcoin::Script,
        witness: &'txin [Vec<u8>],
        age: u32,
        height: u32,
    ) -> Result<Self, Error> {
        let (inner, stack, script_code) = inner::from_txdata(spk, script_sig, witness)?;
        Ok(Interpreter {
            inner,
            stack,
            script_code,
            age,
            height,
        })
    }

    /// Creates an iterator over the satisfied spending conditions
    ///
    /// Returns all satisfied constraints, even if they were redundant (i.e. did
    /// not contribute to the script being satisfied). For example, if a signature
    /// were provided for an `and_b(Pk,false)` fragment, that signature will be
    /// returned, even though the entire and_b must have failed and must not have
    /// been used.
    ///
    /// In case the script is actually dissatisfied, this may return several values
    /// before ultimately returning an error.
    ///
    /// Running the iterator through will consume the internal stack of the
    /// `Iterpreter`, and it should not be used again after this.
    pub fn iter<'iter, F: FnMut(&bitcoin::PublicKey, BitcoinSig) -> bool>(
        &'iter mut self,
        verify_sig: F,
    ) -> Iter<'txin, 'iter, F> {
        Iter {
            verify_sig: verify_sig,
            public_key: if let inner::Inner::PublicKey(ref pk, _) = self.inner {
                Some(pk)
            } else {
                None
            },
            state: if let inner::Inner::Script(ref script, _) = self.inner {
                vec![NodeEvaluationState {
                    node: script,
                    n_evaluated: 0,
                    n_satisfied: 0,
                }]
            } else {
                vec![]
            },
            stack: &mut self.stack,
            age: self.age,
            height: self.height,
            has_errored: false,
        }
    }

    /// Outputs a "descriptor" string which reproduces the spent coins
    ///
    /// This may not represent the original descriptor used to produce the transaction,
    /// since it cannot distinguish between sorted and unsorted multisigs (and anyway
    /// it can only see the final keys, keyorigin info is lost in serializing to Bitcoin).
    ///
    /// If you are using the interpreter as a sanity check on a transaction,
    /// it is worthwhile to try to parse this as a descriptor using `from_str`
    /// which will check standardness and consensus limits, which the interpreter
    /// does not do on its own. Or use the `inferred_descriptor` method which
    /// does this for you.
    pub fn inferred_descriptor_string(&self) -> String {
        match self.inner {
            inner::Inner::PublicKey(ref pk, inner::PubkeyType::Pk) => format!("pk({})", pk),
            inner::Inner::PublicKey(ref pk, inner::PubkeyType::Pkh) => format!("pkh({})", pk),
            inner::Inner::PublicKey(ref pk, inner::PubkeyType::Wpkh) => format!("wpkh({})", pk),
            inner::Inner::PublicKey(ref pk, inner::PubkeyType::ShWpkh) => {
                format!("sh(wpkh({}))", pk)
            }
            inner::Inner::Script(ref ms, inner::ScriptType::Bare) => format!("{}", ms),
            inner::Inner::Script(ref ms, inner::ScriptType::Sh) => format!("sh({})", ms),
            inner::Inner::Script(ref ms, inner::ScriptType::Wsh) => format!("wsh({})", ms),
            inner::Inner::Script(ref ms, inner::ScriptType::ShWsh) => format!("sh(wsh({}))", ms),
        }
    }

    /// Whether this is a pre-segwit spend
    pub fn is_legacy(&self) -> bool {
        match self.inner {
            inner::Inner::PublicKey(_, inner::PubkeyType::Pk) => true,
            inner::Inner::PublicKey(_, inner::PubkeyType::Pkh) => true,
            inner::Inner::PublicKey(_, inner::PubkeyType::Wpkh) => false,
            inner::Inner::PublicKey(_, inner::PubkeyType::ShWpkh) => false, // lol "sorta"
            inner::Inner::Script(_, inner::ScriptType::Bare) => true,
            inner::Inner::Script(_, inner::ScriptType::Sh) => true,
            inner::Inner::Script(_, inner::ScriptType::Wsh) => false,
            inner::Inner::Script(_, inner::ScriptType::ShWsh) => false, // lol "sorta"
        }
    }

    /// Outputs a "descriptor" which reproduces the spent coins
    ///
    /// This may not represent the original descriptor used to produce the transaction,
    /// since it cannot distinguish between sorted and unsorted multisigs (and anyway
    /// it can only see the final keys, keyorigin info is lost in serializing to Bitcoin).
    pub fn inferred_descriptor(&self) -> Result<Descriptor<bitcoin::PublicKey>, ::Error> {
        use std::str::FromStr;
        Descriptor::from_str(&self.inferred_descriptor_string())
    }

    /// Returns a sighash over the entire transaction which can be used to verify signatures
    /// in the descriptor
    ///
    /// Not all fields are used by legacy descriptors; if you are sure this is a legacy
    /// spend (you can check with the `is_legacy` method) you can provide dummy data for
    /// the amount.
    pub fn sighash_message(
        &self,
        unsigned_tx: &bitcoin::Transaction,
        input_idx: usize,
        amount: u64,
        sighash_type: bitcoin::SigHashType,
    ) -> secp256k1::Message {
        let hash = if self.is_legacy() {
            unsigned_tx.signature_hash(input_idx, &self.script_code, sighash_type.as_u32())
        } else {
            let mut sighash_cache = bip143::SigHashCache::new(unsigned_tx);
            sighash_cache.signature_hash(input_idx, &self.script_code, amount, sighash_type)
        };

        secp256k1::Message::from_slice(&hash[..])
            .expect("cryptographically unreachable for this to fail")
    }

    /// Returns a closure which can be given to the `iter` method to check all signatures
    pub fn sighash_verify<'a, C: secp256k1::Verification>(
        &self,
        secp: &'a secp256k1::Secp256k1<C>,
        unsigned_tx: &'a bitcoin::Transaction,
        input_idx: usize,
        amount: u64,
    ) -> impl Fn(&bitcoin::PublicKey, BitcoinSig) -> bool + 'a {
        // Precompute all sighash types because the borrowck doesn't like us
        // pulling self into the closure
        let sighashes = [
            self.sighash_message(unsigned_tx, input_idx, amount, bitcoin::SigHashType::All),
            self.sighash_message(unsigned_tx, input_idx, amount, bitcoin::SigHashType::None),
            self.sighash_message(unsigned_tx, input_idx, amount, bitcoin::SigHashType::Single),
            self.sighash_message(
                unsigned_tx,
                input_idx,
                amount,
                bitcoin::SigHashType::AllPlusAnyoneCanPay,
            ),
            self.sighash_message(
                unsigned_tx,
                input_idx,
                amount,
                bitcoin::SigHashType::NonePlusAnyoneCanPay,
            ),
            self.sighash_message(
                unsigned_tx,
                input_idx,
                amount,
                bitcoin::SigHashType::SinglePlusAnyoneCanPay,
            ),
        ];

        move |pk: &bitcoin::PublicKey, (sig, sighash_type)| {
            // This is an awkward way to do this lookup, but it lets us do exhaustiveness
            // checking in case future rust-bitcoin versions add new sighash types
            let sighash = match sighash_type {
                bitcoin::SigHashType::All => sighashes[0],
                bitcoin::SigHashType::None => sighashes[1],
                bitcoin::SigHashType::Single => sighashes[2],
                bitcoin::SigHashType::AllPlusAnyoneCanPay => sighashes[3],
                bitcoin::SigHashType::NonePlusAnyoneCanPay => sighashes[4],
                bitcoin::SigHashType::SinglePlusAnyoneCanPay => sighashes[5],
            };
            secp.verify(&sighash, &sig, &pk.key).is_ok()
        }
    }
}

/// Type of HashLock used for SatisfiedConstraint structure
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum HashLockType<'intp> {
    ///SHA 256 hashlock
    Sha256(&'intp sha256::Hash),
    ///Hash 256 hashlock
    Hash256(&'intp sha256d::Hash),
    ///Hash160 hashlock
    Hash160(&'intp hash160::Hash),
    ///Ripemd160 hashlock
    Ripemd160(&'intp ripemd160::Hash),
}

/// A satisfied Miniscript condition (Signature, Hashlock, Timelock)
/// 'intp represents the lifetime of descriptor and `stack represents
/// the lifetime of witness
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SatisfiedConstraint<'intp, 'txin> {
    ///Public key and corresponding signature
    PublicKey {
        /// The bitcoin key
        key: &'intp bitcoin::PublicKey,
        /// corresponding signature
        sig: secp256k1::Signature,
    },
    ///PublicKeyHash, corresponding pubkey and signature
    PublicKeyHash {
        /// The pubkey hash
        keyhash: &'intp hash160::Hash,
        /// Corresponding public key
        key: bitcoin::PublicKey,
        /// Corresponding signature for the hash
        sig: secp256k1::Signature,
    },
    ///Hashlock and preimage for SHA256
    HashLock {
        /// The type of Hashlock
        hash: HashLockType<'intp>,
        /// The preimage used for satisfaction
        preimage: &'txin [u8],
    },
    ///Relative Timelock for CSV.
    RelativeTimeLock {
        /// The value of RelativeTimelock
        time: &'intp u32,
    },
    ///Absolute Timelock for CLTV.
    AbsoluteTimeLock {
        /// The value of Absolute timelock
        time: &'intp u32,
    },
}

///This is used by the interpreter to know which evaluation state a AstemElem is.
///This is required because whenever a same node(for eg. OrB) appears on the stack, we don't
///know if the left child has been evaluated or not. And based on the result on
///the top of the stack, we need to decide whether to execute right child or not.
///This is also useful for wrappers and thresholds which push a value on the stack
///depending on evaluation of the children.
struct NodeEvaluationState<'intp> {
    ///The node which is being evaluated
    node: &'intp Miniscript<bitcoin::PublicKey, NoChecks>,
    ///number of children evaluated
    n_evaluated: usize,
    ///number of children satisfied
    n_satisfied: usize,
}

/// Iterator over all the constraints satisfied by a completed scriptPubKey
/// and witness stack
///
/// Returns all satisfied constraints, even if they were redundant (i.e. did
/// not contribute to the script being satisfied). For example, if a signature
/// were provided for an `and_b(Pk,false)` fragment, that signature will be
/// returned, even though the entire and_b must have failed and must not have
/// been used.
///
/// In case the script is actually dissatisfied, this may return several values
/// before ultimately returning an error.
pub struct Iter<'intp, 'txin: 'intp, F: FnMut(&bitcoin::PublicKey, BitcoinSig) -> bool> {
    verify_sig: F,
    public_key: Option<&'intp bitcoin::PublicKey>,
    state: Vec<NodeEvaluationState<'intp>>,
    stack: &'intp mut Stack<'txin>,
    age: u32,
    height: u32,
    has_errored: bool,
}

///Iterator for Iter
impl<'intp, 'txin: 'intp, F> Iterator for Iter<'intp, 'txin, F>
where
    NoChecks: ScriptContext,
    F: FnMut(&bitcoin::PublicKey, BitcoinSig) -> bool,
{
    type Item = Result<SatisfiedConstraint<'intp, 'txin>, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.has_errored {
            // Stop yielding values after the first error
            None
        } else {
            let res = self.iter_next();
            if let Some(Err(_)) = res {
                self.has_errored = true;
            }
            res
        }
    }
}

impl<'intp, 'txin: 'intp, F> Iter<'intp, 'txin, F>
where
    NoChecks: ScriptContext,
    F: FnMut(&bitcoin::PublicKey, BitcoinSig) -> bool,
{
    /// Helper function to push a NodeEvaluationState on state stack
    fn push_evaluation_state(
        &mut self,
        node: &'intp Miniscript<bitcoin::PublicKey, NoChecks>,
        n_evaluated: usize,
        n_satisfied: usize,
    ) -> () {
        self.state.push(NodeEvaluationState {
            node,
            n_evaluated,
            n_satisfied,
        })
    }

    /// Helper function to step the iterator
    fn iter_next(&mut self) -> Option<Result<SatisfiedConstraint<'intp, 'txin>, Error>> {
        while let Some(node_state) = self.state.pop() {
            //non-empty stack
            match node_state.node.node {
                Terminal::True => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    self.stack.push(stack::Element::Satisfied);
                }
                Terminal::False => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    self.stack.push(stack::Element::Dissatisfied);
                }
                Terminal::PkK(ref pk) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_pk(&mut self.verify_sig, pk);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::PkH(ref pkh) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_pkh(&mut self.verify_sig, pkh);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::After(ref n) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_after(n, self.age);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::Older(ref n) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_older(n, self.height);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::Sha256(ref hash) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_sha256(hash);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::Hash256(ref hash) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_hash256(hash);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::Hash160(ref hash) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_hash160(hash);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::Ripemd160(ref hash) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    let res = self.stack.evaluate_ripemd160(hash);
                    if res.is_some() {
                        return res;
                    }
                }
                Terminal::Alt(ref sub) | Terminal::Swap(ref sub) | Terminal::Check(ref sub) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    self.push_evaluation_state(sub, 0, 0);
                }
                Terminal::DupIf(ref sub) if node_state.n_evaluated == 0 => match self.stack.pop() {
                    Some(stack::Element::Dissatisfied) => {
                        self.stack.push(stack::Element::Dissatisfied);
                    }
                    Some(stack::Element::Satisfied) => {
                        self.push_evaluation_state(node_state.node, 1, 1);
                        self.push_evaluation_state(sub, 0, 0);
                    }
                    Some(stack::Element::Push(_v)) => {
                        return Some(Err(Error::UnexpectedStackElementPush))
                    }
                    None => return Some(Err(Error::UnexpectedStackEnd)),
                },
                Terminal::DupIf(ref _sub) if node_state.n_evaluated == 1 => {
                    self.stack.push(stack::Element::Satisfied);
                }
                Terminal::ZeroNotEqual(ref sub) | Terminal::Verify(ref sub)
                    if node_state.n_evaluated == 0 =>
                {
                    self.push_evaluation_state(node_state.node, 1, 0);
                    self.push_evaluation_state(sub, 0, 0);
                }
                Terminal::Verify(ref _sub) if node_state.n_evaluated == 1 => {
                    match self.stack.pop() {
                        Some(stack::Element::Satisfied) => (),
                        Some(_) => return Some(Err(Error::VerifyFailed)),
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::ZeroNotEqual(ref _sub) if node_state.n_evaluated == 1 => {
                    match self.stack.pop() {
                        Some(stack::Element::Dissatisfied) => {
                            self.stack.push(stack::Element::Dissatisfied)
                        }
                        Some(_) => self.stack.push(stack::Element::Satisfied),
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::NonZero(ref sub) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    match self.stack.last() {
                        Some(&stack::Element::Dissatisfied) => (),
                        Some(_) => self.push_evaluation_state(sub, 0, 0),
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::AndV(ref left, ref right) => {
                    debug_assert_eq!(node_state.n_evaluated, 0);
                    debug_assert_eq!(node_state.n_satisfied, 0);
                    self.push_evaluation_state(right, 0, 0);
                    self.push_evaluation_state(left, 0, 0);
                }
                Terminal::OrB(ref left, ref _right) | Terminal::AndB(ref left, ref _right)
                    if node_state.n_evaluated == 0 =>
                {
                    self.push_evaluation_state(node_state.node, 1, 0);
                    self.push_evaluation_state(left, 0, 0);
                }
                Terminal::OrB(ref _left, ref right) | Terminal::AndB(ref _left, ref right)
                    if node_state.n_evaluated == 1 =>
                {
                    match self.stack.pop() {
                        Some(stack::Element::Dissatisfied) => {
                            self.push_evaluation_state(node_state.node, 2, 0);
                            self.push_evaluation_state(right, 0, 0);
                        }
                        Some(stack::Element::Satisfied) => {
                            self.push_evaluation_state(node_state.node, 2, 1);
                            self.push_evaluation_state(right, 0, 0);
                        }
                        Some(stack::Element::Push(_v)) => {
                            return Some(Err(Error::UnexpectedStackElementPush))
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::AndB(ref _left, ref _right) if node_state.n_evaluated == 2 => {
                    match self.stack.pop() {
                        Some(stack::Element::Satisfied) if node_state.n_satisfied == 1 => {
                            self.stack.push(stack::Element::Satisfied)
                        }
                        Some(_) => self.stack.push(stack::Element::Dissatisfied),
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::AndOr(ref left, ref _right, _)
                | Terminal::OrC(ref left, ref _right)
                | Terminal::OrD(ref left, ref _right)
                    if node_state.n_evaluated == 0 =>
                {
                    self.push_evaluation_state(node_state.node, 1, 0);
                    self.push_evaluation_state(left, 0, 0);
                }
                Terminal::OrB(ref _left, ref _right) if node_state.n_evaluated == 2 => {
                    match self.stack.pop() {
                        Some(stack::Element::Dissatisfied) if node_state.n_satisfied == 0 => {
                            self.stack.push(stack::Element::Dissatisfied)
                        }
                        Some(_) => {
                            self.stack.push(stack::Element::Satisfied);
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::OrC(ref _left, ref right) if node_state.n_evaluated == 1 => {
                    match self.stack.pop() {
                        Some(stack::Element::Satisfied) => (),
                        Some(stack::Element::Dissatisfied) => {
                            self.push_evaluation_state(right, 0, 0)
                        }
                        Some(stack::Element::Push(_v)) => {
                            return Some(Err(Error::UnexpectedStackElementPush))
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::OrD(ref _left, ref right) if node_state.n_evaluated == 1 => {
                    match self.stack.pop() {
                        Some(stack::Element::Satisfied) => {
                            self.stack.push(stack::Element::Satisfied)
                        }
                        Some(stack::Element::Dissatisfied) => {
                            self.push_evaluation_state(right, 0, 0)
                        }
                        Some(stack::Element::Push(_v)) => {
                            return Some(Err(Error::UnexpectedStackElementPush))
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::AndOr(_, ref left, ref right) | Terminal::OrI(ref left, ref right) => {
                    match self.stack.pop() {
                        Some(stack::Element::Satisfied) => self.push_evaluation_state(left, 0, 0),
                        Some(stack::Element::Dissatisfied) => {
                            self.push_evaluation_state(right, 0, 0)
                        }
                        Some(stack::Element::Push(_v)) => {
                            return Some(Err(Error::UnexpectedStackElementPush))
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::Thresh(ref _k, ref subs) if node_state.n_evaluated == 0 => {
                    self.push_evaluation_state(node_state.node, 1, 0);
                    self.push_evaluation_state(&subs[0], 0, 0);
                }
                Terminal::Thresh(k, ref subs) if node_state.n_evaluated == subs.len() => {
                    match self.stack.pop() {
                        Some(stack::Element::Dissatisfied) if node_state.n_satisfied == k => {
                            self.stack.push(stack::Element::Satisfied)
                        }
                        Some(stack::Element::Satisfied) if node_state.n_satisfied == k - 1 => {
                            self.stack.push(stack::Element::Satisfied)
                        }
                        Some(stack::Element::Satisfied) | Some(stack::Element::Dissatisfied) => {
                            self.stack.push(stack::Element::Dissatisfied)
                        }
                        Some(stack::Element::Push(_v)) => {
                            return Some(Err(Error::UnexpectedStackElementPush))
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::Thresh(ref _k, ref subs) if node_state.n_evaluated != 0 => {
                    match self.stack.pop() {
                        Some(stack::Element::Dissatisfied) => {
                            self.push_evaluation_state(
                                node_state.node,
                                node_state.n_evaluated + 1,
                                node_state.n_satisfied,
                            );
                            self.push_evaluation_state(&subs[node_state.n_evaluated], 0, 0);
                        }
                        Some(stack::Element::Satisfied) => {
                            self.push_evaluation_state(
                                node_state.node,
                                node_state.n_evaluated + 1,
                                node_state.n_satisfied + 1,
                            );
                            self.push_evaluation_state(&subs[node_state.n_evaluated], 0, 0);
                        }
                        Some(stack::Element::Push(_v)) => {
                            return Some(Err(Error::UnexpectedStackElementPush))
                        }
                        None => return Some(Err(Error::UnexpectedStackEnd)),
                    }
                }
                Terminal::Multi(ref k, ref subs) if node_state.n_evaluated == 0 => {
                    let len = self.stack.len();
                    if len < k + 1 {
                        return Some(Err(Error::InsufficientSignaturesMultiSig));
                    } else {
                        //Non-sat case. If the first sig is empty, others k elements must
                        //be empty.
                        match self.stack.last() {
                            Some(&stack::Element::Dissatisfied) => {
                                //Remove the extra zero from multi-sig check
                                let sigs = self.stack.split_off(len - (k + 1));
                                let nonsat = sigs
                                    .iter()
                                    .map(|sig| *sig == stack::Element::Dissatisfied)
                                    .filter(|empty| *empty)
                                    .count();
                                if nonsat == *k + 1 {
                                    self.stack.push(stack::Element::Dissatisfied);
                                } else {
                                    return Some(Err(Error::MissingExtraZeroMultiSig));
                                }
                            }
                            None => return Some(Err(Error::UnexpectedStackEnd)),
                            _ => {
                                match self
                                    .stack
                                    .evaluate_multi(&mut self.verify_sig, &subs[subs.len() - 1])
                                {
                                    Some(Ok(x)) => {
                                        self.push_evaluation_state(
                                            node_state.node,
                                            node_state.n_evaluated + 1,
                                            node_state.n_satisfied + 1,
                                        );
                                        return Some(Ok(x));
                                    }
                                    None => self.push_evaluation_state(
                                        node_state.node,
                                        node_state.n_evaluated + 1,
                                        node_state.n_satisfied,
                                    ),
                                    x => return x, //forward errors as is
                                }
                            }
                        }
                    }
                }
                Terminal::Multi(k, ref subs) => {
                    if node_state.n_satisfied == k {
                        //multi-sig bug: Pop extra 0
                        if let Some(stack::Element::Dissatisfied) = self.stack.pop() {
                            self.stack.push(stack::Element::Satisfied);
                        } else {
                            return Some(Err(Error::MissingExtraZeroMultiSig));
                        }
                    } else if node_state.n_evaluated == subs.len() {
                        return Some(Err(Error::MultiSigEvaluationError));
                    } else {
                        match self.stack.evaluate_multi(
                            &mut self.verify_sig,
                            &subs[subs.len() - node_state.n_evaluated - 1],
                        ) {
                            Some(Ok(x)) => {
                                self.push_evaluation_state(
                                    node_state.node,
                                    node_state.n_evaluated + 1,
                                    node_state.n_satisfied + 1,
                                );
                                return Some(Ok(x));
                            }
                            None => self.push_evaluation_state(
                                node_state.node,
                                node_state.n_evaluated + 1,
                                node_state.n_satisfied,
                            ),
                            x => return x, //forward errors as is
                        }
                    }
                }
                //All other match patterns should not be reached in any valid
                //type checked Miniscript
                _ => return Some(Err(Error::CouldNotEvaluate)),
            };
        }

        //state empty implies that either the execution has terminated or we have a
        //Pk based descriptor
        if let Some(pk) = self.public_key {
            if let Some(stack::Element::Push(sig)) = self.stack.pop() {
                if let Ok(sig) = verify_sersig(&mut self.verify_sig, &pk, &sig) {
                    //Signature check successful, set public_key to None to
                    //terminate the next() function in the subsequent call
                    self.public_key = None;
                    self.stack.push(stack::Element::Satisfied);
                    return Some(Ok(SatisfiedConstraint::PublicKey { key: pk, sig }));
                } else {
                    return Some(Err(Error::PkEvaluationError(
                        pk.clone().to_public_key(NullCtx),
                    )));
                }
            } else {
                return Some(Err(Error::UnexpectedStackEnd));
            }
        } else {
            //All the script has been executed.
            //Check that the stack must contain exactly 1 satisfied element
            if self.stack.pop() == Some(stack::Element::Satisfied) && self.stack.is_empty() {
                return None;
            } else {
                return Some(Err(Error::ScriptSatisfactionError));
            }
        }
    }
}

/// Helper function to verify serialized signature
fn verify_sersig<'txin, F>(
    verify_sig: F,
    pk: &bitcoin::PublicKey,
    sigser: &[u8],
) -> Result<secp256k1::Signature, Error>
where
    F: FnOnce(&bitcoin::PublicKey, BitcoinSig) -> bool,
{
    if let Some((sighash_byte, sig)) = sigser.split_last() {
        let sighashtype = bitcoin::SigHashType::from_u32(*sighash_byte as u32);
        let sig = secp256k1::Signature::from_der(sig)?;
        if verify_sig(pk, (sig, sighashtype)) {
            Ok(sig)
        } else {
            Err(Error::InvalidSignature(*pk))
        }
    } else {
        Err(Error::PkEvaluationError(*pk))
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use bitcoin;
    use bitcoin::hashes::{hash160, ripemd160, sha256, sha256d, Hash};
    use bitcoin::secp256k1::{self, Secp256k1, VerifyOnly};
    use miniscript::context::NoChecks;
    use BitcoinSig;
    use Miniscript;
    use MiniscriptKey;
    use NullCtx;
    use ToPublicKey;

    fn setup_keys_sigs(
        n: usize,
    ) -> (
        Vec<bitcoin::PublicKey>,
        Vec<Vec<u8>>,
        Vec<secp256k1::Signature>,
        secp256k1::Message,
        Secp256k1<VerifyOnly>,
    ) {
        let secp_sign = secp256k1::Secp256k1::signing_only();
        let secp_verify = secp256k1::Secp256k1::verification_only();
        let msg = secp256k1::Message::from_slice(&b"Yoda: btc, I trust. HODL I must!"[..])
            .expect("32 bytes");
        let mut pks = vec![];
        let mut secp_sigs = vec![];
        let mut der_sigs = vec![];
        let mut sk = [0; 32];
        for i in 1..n + 1 {
            sk[0] = i as u8;
            sk[1] = (i >> 8) as u8;
            sk[2] = (i >> 16) as u8;

            let sk = secp256k1::SecretKey::from_slice(&sk[..]).expect("secret key");
            let pk = bitcoin::PublicKey {
                key: secp256k1::PublicKey::from_secret_key(&secp_sign, &sk),
                compressed: true,
            };
            let sig = secp_sign.sign(&msg, &sk);
            secp_sigs.push(sig);
            let mut sigser = sig.serialize_der().to_vec();
            sigser.push(0x01); // sighash_all
            pks.push(pk);
            der_sigs.push(sigser);
        }
        (pks, der_sigs, secp_sigs, msg, secp_verify)
    }

    #[test]
    fn sat_constraints() {
        let (pks, der_sigs, secp_sigs, sighash, secp) = setup_keys_sigs(10);
        let vfyfn_ =
            |pk: &bitcoin::PublicKey, (sig, _)| secp.verify(&sighash, &sig, &pk.key).is_ok();

        fn from_stack<'txin, 'elem, F>(
            verify_fn: F,
            stack: &'elem mut Stack<'txin>,
            ms: &'elem Miniscript<bitcoin::PublicKey, NoChecks>,
        ) -> Iter<'elem, 'txin, F>
        where
            F: FnMut(&bitcoin::PublicKey, BitcoinSig) -> bool,
        {
            Iter {
                verify_sig: verify_fn,
                stack: stack,
                public_key: None,
                state: vec![NodeEvaluationState {
                    node: ms,
                    n_evaluated: 0,
                    n_satisfied: 0,
                }],
                age: 1002,
                height: 1002,
                has_errored: false,
            }
        };

        let pk = ms_str!("c:pk_k({})", pks[0]);
        let pkh = ms_str!("c:pk_h({})", pks[1].to_pubkeyhash());
        //Time
        let after = ms_str!("after({})", 1000);
        let older = ms_str!("older({})", 1000);
        //Hashes
        let preimage = vec![0xab as u8; 32];
        let sha256_hash = sha256::Hash::hash(&preimage);
        let sha256 = ms_str!("sha256({})", sha256_hash);
        let sha256d_hash_rev = sha256d::Hash::hash(&preimage);
        let mut sha256d_hash_bytes = sha256d_hash_rev.clone().into_inner();
        sha256d_hash_bytes.reverse();
        let sha256d_hash = sha256d::Hash::from_inner(sha256d_hash_bytes);
        let hash256 = ms_str!("hash256({})", sha256d_hash);
        let hash160_hash = hash160::Hash::hash(&preimage);
        let hash160 = ms_str!("hash160({})", hash160_hash);
        let ripemd160_hash = ripemd160::Hash::hash(&preimage);
        let ripemd160 = ms_str!("ripemd160({})", ripemd160_hash);

        let mut stack = Stack::from(vec![stack::Element::Push(&der_sigs[0])]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &pk);
        let pk_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            pk_satisfied.unwrap(),
            vec![SatisfiedConstraint::PublicKey {
                key: &pks[0],
                sig: secp_sigs[0].clone(),
            }]
        );

        //Check Pk failure with wrong signature
        let mut stack = Stack::from(vec![stack::Element::Dissatisfied]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &pk);
        let pk_err: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert!(pk_err.is_err());

        //Check Pkh
        let pk_bytes = pks[1].to_public_key(NullCtx).to_bytes();
        let mut stack = Stack::from(vec![
            stack::Element::Push(&der_sigs[1]),
            stack::Element::Push(&pk_bytes),
        ]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &pkh);
        let pkh_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            pkh_satisfied.unwrap(),
            vec![SatisfiedConstraint::PublicKeyHash {
                keyhash: &pks[1].to_pubkeyhash(),
                key: pks[1].clone(),
                sig: secp_sigs[1].clone(),
            }]
        );

        //Check After
        let mut stack = Stack::from(vec![]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &after);
        let after_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            after_satisfied.unwrap(),
            vec![SatisfiedConstraint::AbsoluteTimeLock { time: &1000 }]
        );

        //Check Older
        let mut stack = Stack::from(vec![]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &older);
        let older_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            older_satisfied.unwrap(),
            vec![SatisfiedConstraint::RelativeTimeLock { time: &1000 }]
        );

        //Check Sha256
        let mut stack = Stack::from(vec![stack::Element::Push(&preimage)]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &sha256);
        let sah256_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            sah256_satisfied.unwrap(),
            vec![SatisfiedConstraint::HashLock {
                hash: HashLockType::Sha256(&sha256_hash),
                preimage: &preimage,
            }]
        );

        //Check Shad256
        let mut stack = Stack::from(vec![stack::Element::Push(&preimage)]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &hash256);
        let sha256d_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            sha256d_satisfied.unwrap(),
            vec![SatisfiedConstraint::HashLock {
                hash: HashLockType::Hash256(&sha256d_hash_rev),
                preimage: &preimage,
            }]
        );

        //Check hash160
        let mut stack = Stack::from(vec![stack::Element::Push(&preimage)]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &hash160);
        let hash160_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            hash160_satisfied.unwrap(),
            vec![SatisfiedConstraint::HashLock {
                hash: HashLockType::Hash160(&hash160_hash),
                preimage: &preimage,
            }]
        );

        //Check ripemd160
        let mut stack = Stack::from(vec![stack::Element::Push(&preimage)]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &ripemd160);
        let ripemd160_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            ripemd160_satisfied.unwrap(),
            vec![SatisfiedConstraint::HashLock {
                hash: HashLockType::Ripemd160(&ripemd160_hash),
                preimage: &preimage
            }]
        );

        //Check AndV
        let pk_bytes = pks[1].to_public_key(NullCtx).to_bytes();
        let mut stack = Stack::from(vec![
            stack::Element::Push(&der_sigs[1]),
            stack::Element::Push(&pk_bytes),
            stack::Element::Push(&der_sigs[0]),
        ]);
        let elem = ms_str!(
            "and_v(vc:pk_k({}),c:pk_h({}))",
            pks[0],
            pks[1].to_pubkeyhash()
        );
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let and_v_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            and_v_satisfied.unwrap(),
            vec![
                SatisfiedConstraint::PublicKey {
                    key: &pks[0],
                    sig: secp_sigs[0].clone(),
                },
                SatisfiedConstraint::PublicKeyHash {
                    keyhash: &pks[1].to_pubkeyhash(),
                    key: pks[1].clone(),
                    sig: secp_sigs[1].clone(),
                }
            ]
        );

        //Check AndB
        let mut stack = Stack::from(vec![
            stack::Element::Push(&preimage),
            stack::Element::Push(&der_sigs[0]),
        ]);
        let elem = ms_str!("and_b(c:pk_k({}),sjtv:sha256({}))", pks[0], sha256_hash);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let and_b_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            and_b_satisfied.unwrap(),
            vec![
                SatisfiedConstraint::PublicKey {
                    key: &pks[0],
                    sig: secp_sigs[0].clone(),
                },
                SatisfiedConstraint::HashLock {
                    hash: HashLockType::Sha256(&sha256_hash),
                    preimage: &preimage,
                }
            ]
        );

        //Check AndOr
        let mut stack = Stack::from(vec![
            stack::Element::Push(&preimage),
            stack::Element::Push(&der_sigs[0]),
        ]);
        let elem = ms_str!(
            "andor(c:pk_k({}),jtv:sha256({}),c:pk_h({}))",
            pks[0],
            sha256_hash,
            pks[1].to_pubkeyhash(),
        );
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let and_or_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            and_or_satisfied.unwrap(),
            vec![
                SatisfiedConstraint::PublicKey {
                    key: &pks[0],
                    sig: secp_sigs[0].clone(),
                },
                SatisfiedConstraint::HashLock {
                    hash: HashLockType::Sha256(&sha256_hash),
                    preimage: &preimage,
                }
            ]
        );

        //AndOr second satisfaction path
        let pk_bytes = pks[1].to_public_key(NullCtx).to_bytes();
        let mut stack = Stack::from(vec![
            stack::Element::Push(&der_sigs[1]),
            stack::Element::Push(&pk_bytes),
            stack::Element::Dissatisfied,
        ]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let and_or_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            and_or_satisfied.unwrap(),
            vec![SatisfiedConstraint::PublicKeyHash {
                keyhash: &pks[1].to_pubkeyhash(),
                key: pks[1].clone(),
                sig: secp_sigs[1].clone(),
            }]
        );

        //Check OrB
        let mut stack = Stack::from(vec![
            stack::Element::Push(&preimage),
            stack::Element::Dissatisfied,
        ]);
        let elem = ms_str!("or_b(c:pk_k({}),sjtv:sha256({}))", pks[0], sha256_hash);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let or_b_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            or_b_satisfied.unwrap(),
            vec![SatisfiedConstraint::HashLock {
                hash: HashLockType::Sha256(&sha256_hash),
                preimage: &preimage,
            }]
        );

        //Check OrD
        let mut stack = Stack::from(vec![stack::Element::Push(&der_sigs[0])]);
        let elem = ms_str!("or_d(c:pk_k({}),jtv:sha256({}))", pks[0], sha256_hash);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let or_d_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            or_d_satisfied.unwrap(),
            vec![SatisfiedConstraint::PublicKey {
                key: &pks[0],
                sig: secp_sigs[0].clone(),
            }]
        );

        //Check OrC
        let mut stack = Stack::from(vec![
            stack::Element::Push(&der_sigs[0]),
            stack::Element::Dissatisfied,
        ]);
        let elem = ms_str!("t:or_c(jtv:sha256({}),vc:pk_k({}))", sha256_hash, pks[0]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let or_c_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            or_c_satisfied.unwrap(),
            vec![SatisfiedConstraint::PublicKey {
                key: &pks[0],
                sig: secp_sigs[0].clone(),
            }]
        );

        //Check OrI
        let mut stack = Stack::from(vec![
            stack::Element::Push(&der_sigs[0]),
            stack::Element::Dissatisfied,
        ]);
        let elem = ms_str!("or_i(jtv:sha256({}),c:pk_k({}))", sha256_hash, pks[0]);
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let or_i_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            or_i_satisfied.unwrap(),
            vec![SatisfiedConstraint::PublicKey {
                key: &pks[0],
                sig: secp_sigs[0].clone(),
            }]
        );

        //Check Thres
        let mut stack = Stack::from(vec![
            stack::Element::Push(&der_sigs[0]),
            stack::Element::Push(&der_sigs[1]),
            stack::Element::Push(&der_sigs[2]),
            stack::Element::Dissatisfied,
            stack::Element::Dissatisfied,
        ]);
        let elem = ms_str!(
            "thresh(3,c:pk_k({}),sc:pk_k({}),sc:pk_k({}),sc:pk_k({}),sc:pk_k({}))",
            pks[4],
            pks[3],
            pks[2],
            pks[1],
            pks[0],
        );
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let thresh_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            thresh_satisfied.unwrap(),
            vec![
                SatisfiedConstraint::PublicKey {
                    key: &pks[2],
                    sig: secp_sigs[2].clone(),
                },
                SatisfiedConstraint::PublicKey {
                    key: &pks[1],
                    sig: secp_sigs[1].clone(),
                },
                SatisfiedConstraint::PublicKey {
                    key: &pks[0],
                    sig: secp_sigs[0].clone(),
                }
            ]
        );

        // Check multi
        let mut stack = Stack::from(vec![
            stack::Element::Dissatisfied,
            stack::Element::Push(&der_sigs[2]),
            stack::Element::Push(&der_sigs[1]),
            stack::Element::Push(&der_sigs[0]),
        ]);
        let elem = ms_str!(
            "multi(3,{},{},{},{},{})",
            pks[4],
            pks[3],
            pks[2],
            pks[1],
            pks[0],
        );
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let multi_satisfied: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert_eq!(
            multi_satisfied.unwrap(),
            vec![
                SatisfiedConstraint::PublicKey {
                    key: &pks[0],
                    sig: secp_sigs[0].clone(),
                },
                SatisfiedConstraint::PublicKey {
                    key: &pks[1],
                    sig: secp_sigs[1].clone(),
                },
                SatisfiedConstraint::PublicKey {
                    key: &pks[2],
                    sig: secp_sigs[2].clone(),
                },
            ]
        );

        // Error multi: Invalid order of sigs
        let mut stack = Stack::from(vec![
            stack::Element::Dissatisfied,
            stack::Element::Push(&der_sigs[0]),
            stack::Element::Push(&der_sigs[2]),
            stack::Element::Push(&der_sigs[1]),
        ]);
        let elem = ms_str!(
            "multi(3,{},{},{},{},{})",
            pks[4],
            pks[3],
            pks[2],
            pks[1],
            pks[0],
        );
        let mut vfyfn = vfyfn_.clone(); // sigh rust 1.29...
        let constraints = from_stack(&mut vfyfn, &mut stack, &elem);

        let multi_error: Result<Vec<SatisfiedConstraint>, Error> = constraints.collect();
        assert!(multi_error.is_err());
    }
}