1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use minidump::Module;
use std::collections::HashMap;
pub use symbols_shim::*;

pub trait SymbolProvider {
    fn fill_symbol(
        &self,
        module: &dyn Module,
        frame: &mut dyn FrameSymbolizer,
    ) -> Result<(), FillSymbolError>;
    fn walk_frame(&self, module: &dyn Module, walker: &mut dyn FrameWalker) -> Option<()>;
    fn stats(&self) -> HashMap<String, SymbolStats>;
}

#[derive(Default)]
pub struct MultiSymbolProvider {
    providers: Vec<Box<dyn SymbolProvider>>,
}

impl MultiSymbolProvider {
    pub fn new() -> MultiSymbolProvider {
        Default::default()
    }

    pub fn add(&mut self, provider: Box<dyn SymbolProvider>) {
        self.providers.push(provider);
    }
}

impl SymbolProvider for MultiSymbolProvider {
    fn fill_symbol(
        &self,
        module: &dyn Module,
        frame: &mut dyn FrameSymbolizer,
    ) -> Result<(), FillSymbolError> {
        // Return Ok if *any* symbol provider came back with Ok, so that the user can
        // distinguish between having no symbols at all and just not being able to
        // symbolize this particular frame.
        let mut best_result = Err(FillSymbolError {});
        for p in self.providers.iter() {
            let new_result = p.fill_symbol(module, frame);
            best_result = best_result.or(new_result);
        }
        best_result
    }

    fn walk_frame(&self, module: &dyn Module, walker: &mut dyn FrameWalker) -> Option<()> {
        for p in self.providers.iter() {
            let result = p.walk_frame(module, walker);
            if result.is_some() {
                return result;
            }
        }
        None
    }

    fn stats(&self) -> HashMap<String, SymbolStats> {
        let mut result = HashMap::new();
        for p in self.providers.iter() {
            // FIXME: do more intelligent merging of the stats
            // (currently doesn't matter as only one provider reports non-empty stats).
            result.extend(p.stats());
        }
        result
    }
}

#[cfg(feature = "breakpad-syms")]
mod symbols_shim {
    use super::SymbolProvider;
    pub use breakpad_symbols::{
        FillSymbolError, FrameSymbolizer, FrameWalker, SymbolStats, SymbolSupplier, Symbolizer,
    };
    use minidump::Module;
    use std::collections::HashMap;
    use std::path::PathBuf;
    impl SymbolProvider for Symbolizer {
        fn fill_symbol(
            &self,
            module: &dyn Module,
            frame: &mut dyn FrameSymbolizer,
        ) -> Result<(), FillSymbolError> {
            self.fill_symbol(module, frame)
        }
        fn walk_frame(&self, module: &dyn Module, walker: &mut dyn FrameWalker) -> Option<()> {
            self.walk_frame(module, walker)
        }
        fn stats(&self) -> HashMap<String, SymbolStats> {
            self.stats()
        }
    }

    /// Gets a SymbolSupplier that looks up symbols by path or with urls.
    ///
    /// May use the `symbols_cache` path to store downloads.
    pub fn http_symbol_supplier(
        symbol_paths: Vec<PathBuf>,
        symbol_urls: Vec<String>,
        symbols_cache: PathBuf,
        symbols_tmp: PathBuf,
    ) -> impl SymbolSupplier {
        breakpad_symbols::HttpSymbolSupplier::new(
            symbol_urls,
            symbols_cache,
            symbols_tmp,
            symbol_paths,
        )
    }

    /// Gets a SymbolSupplier that looks up symbols by path.
    pub fn simple_symbol_supplier(symbol_paths: Vec<PathBuf>) -> impl SymbolSupplier {
        breakpad_symbols::SimpleSymbolSupplier::new(symbol_paths)
    }

    /// Gets a mock SymbolSupplier that just maps module names
    /// to a string containing an entire breakpad .sym file, for tests.
    pub fn string_symbol_supplier(modules: HashMap<String, String>) -> impl SymbolSupplier {
        breakpad_symbols::StringSymbolSupplier::new(modules)
    }
}

#[cfg(feature = "symbolic-syms")]
mod symbols_shim {
    #![allow(dead_code)]

    use super::SymbolProvider;
    use minidump::Module;
    use std::collections::HashMap;
    use std::path::PathBuf;

    // Import symbolic here

    /// A trait for things that can locate symbols for a given module.
    pub trait SymbolSupplier {
        /// Locate and load a symbol file for `module`.
        ///
        /// Implementations may use any strategy for locating and loading
        /// symbols.
        fn locate_symbols(&mut self, module: &dyn Module) -> Result<SymbolFile, SymbolError>;
    }

    /// A trait for setting symbol information on something like a stack frame.
    pub trait FrameSymbolizer {
        /// Get the program counter value for this frame.
        fn get_instruction(&self) -> u64;
        /// Set the name, base address, and paramter size of the function in
        // which this frame is executing.
        fn set_function(&mut self, name: &str, base: u64, parameter_size: u32);
        /// Set the source file and (1-based) line number this frame represents.
        fn set_source_file(&mut self, file: &str, line: u32, base: u64);
    }

    pub trait FrameWalker {
        /// Get the instruction address that we're trying to unwind from.
        fn get_instruction(&self) -> u64;
        /// Get the number of bytes the callee's callee's parameters take up
        /// on the stack (or 0 if unknown/invalid). This is needed for
        /// STACK WIN unwinding.
        fn get_grand_callee_parameter_size(&self) -> u32;
        /// Get a register-sized value stored at this address.
        fn get_register_at_address(&self, address: u64) -> Option<u64>;
        /// Get the value of a register from the callee's frame.
        fn get_callee_register(&self, name: &str) -> Option<u64>;
        /// Set the value of a register for the caller's frame.
        fn set_caller_register(&mut self, name: &str, val: u64) -> Option<()>;
        /// Explicitly mark one of the caller's registers as invalid.
        fn clear_caller_register(&mut self, name: &str);
        /// Set whatever registers in the caller should be set based on the cfa (e.g. rsp).
        fn set_cfa(&mut self, val: u64) -> Option<()>;
        /// Set whatever registers in the caller should be set based on the return address (e.g. rip).
        fn set_ra(&mut self, val: u64) -> Option<()>;
    }

    /// Possible results of locating symbols. (can be opaque, not used externally)
    #[derive(Debug)]
    pub struct SymbolResult;

    /// Symbolicate stack frames.
    ///
    /// A `Symbolizer` manages loading symbols and looking up symbols in them
    /// including caching so that symbols for a given module are only loaded once.
    ///
    /// Call [`Symbolizer::new`][new] to instantiate a `Symbolizer`. A Symbolizer
    /// requires a [`SymbolSupplier`][supplier] to locate symbols. If you have
    /// symbols on disk in the [customary directory layout][dirlayout], a
    /// [`SimpleSymbolSupplier`][simple] will work.
    ///
    /// Use [`get_symbol_at_address`][get_symbol] or [`fill_symbol`][fill_symbol] to
    /// do symbol lookup.
    ///
    /// [new]: struct.Symbolizer.html#method.new
    /// [supplier]: trait.SymbolSupplier.html
    /// [dirlayout]: fn.relative_symbol_path.html
    /// [simple]: struct.SimpleSymbolSupplier.html
    /// [get_symbol]: struct.Symbolizer.html#method.get_symbol_at_address
    /// [fill_symbol]: struct.Symbolizer.html#method.fill_symbol
    pub struct Symbolizer {
        /// Symbol supplier for locating symbols.
        supplier: Box<dyn SymbolSupplier + 'static>,
    }

    impl Symbolizer {
        /// Create a `Symbolizer` that uses `supplier` to locate symbols.
        pub fn new<T: SymbolSupplier + 'static>(supplier: T) -> Symbolizer {
            Symbolizer {
                supplier: Box::new(supplier),
            }
        }
    }

    impl SymbolProvider for Symbolizer {
        fn fill_symbol(
            &self,
            _module: &dyn Module,
            _frame: &mut dyn FrameSymbolizer,
        ) -> Result<(), FillSymbolError> {
            unimplemented!()
        }
        fn walk_frame(&self, _module: &dyn Module, _walker: &mut dyn FrameWalker) -> Option<()> {
            unimplemented!()
        }
    }

    pub struct HttpSymbolSupplier {}

    pub struct SimpleSymbolSupplier {}

    pub struct StringSymbolSupplier {}

    impl SymbolSupplier for HttpSymbolSupplier {
        fn locate_symbols(&self, _module: &dyn Module) -> Result<SymbolFile, SymbolError> {
            unimplemented!()
        }
    }

    impl SymbolSupplier for SimpleSymbolSupplier {
        fn locate_symbols(&self, _module: &dyn Module) -> Result<SymbolFile, SymbolError> {
            unimplemented!()
        }
    }

    impl SymbolSupplier for StringSymbolSupplier {
        fn locate_symbols(&self, _module: &dyn Module) -> Result<SymbolFile, SymbolError> {
            unimplemented!()
        }
    }

    /// Gets a SymbolSupplier that looks up symbols by path or with urls.
    ///
    /// May use the `symbols_cache` path to store downloads.
    pub fn http_symbol_supplier(
        _symbol_paths: Vec<PathBuf>,
        _symbol_urls: Vec<String>,
        _symbols_cache: PathBuf,
        _symbols_tmp: PathBuf,
    ) -> impl SymbolSupplier {
        HttpSymbolSupplier {}
    }

    /// Gets a SymbolSupplier that looks up symbols by path.
    pub fn simple_symbol_supplier(_symbol_paths: Vec<PathBuf>) -> impl SymbolSupplier {
        SimpleSymbolSupplier {}
    }

    /// Gets a mock SymbolSupplier that just maps module names
    /// to a string containing an entire breakpad .sym file, for tests.
    pub fn string_symbol_supplier(_modules: HashMap<String, String>) -> impl SymbolSupplier {
        StringSymbolSupplier {}
    }

    /// Possible results of locating symbols for a module.
    ///
    /// Because symbols may be found from different sources, symbol providers
    /// are usually configured to "cascade" into the next one whenever they report
    /// `NotFound`.
    ///
    /// Cascading currently assumes that if any provider finds symbols for
    /// a module, all other providers will find the same symbols (if any).
    /// Therefore cascading will not be applied if a LoadError or ParseError
    /// occurs (because presumably, all the other sources will also fail to
    /// load/parse.)
    ///
    /// In theory we could do some interesting things where we attempt to
    /// be more robust and actually merge together the symbols from multiple
    /// sources, but that would make it difficult to cache symbol files, and
    /// would rarely actually improve results.
    ///
    /// Since symbol files can be on the order of a gigabyte(!) and downloaded
    /// from the network, aggressive caching is pretty important. The current
    /// approach is a nice balance of simple and effective.
    #[derive(Debug)]
    pub enum SymbolError {
        /// Symbol file could not be found.
        ///
        /// In this case other symbol providers may still be able to find it!
        NotFound,
        /// Symbol file could not be loaded into memory.
        LoadError(Error),
        /// Symbol file was too corrupt to be parsed at all.
        ///
        /// Because symbol files are pretty modular, many corruptions/ambiguities
        /// can be either repaired or discarded at a fairly granular level
        /// (e.g. a bad STACK WIN line can be discarded without affecting anything
        /// else). But sometimes we can't make any sense of the symbol file, and
        /// you find yourself here.
        ParseError(Error),
    }

    #[derive(Debug)]
    pub struct FillSymbolError {}

    // Whatever representation you want, rust-minidump won't look at it.
    struct SymbolFile {}

    /// Statistics on the symbols of a module.
    #[derive(Default, Debug)]
    pub struct SymbolStats {
        /// If the module's symbols were downloaded, this is the url used.
        pub symbol_url: Option<String>,
        /// If the symbols were found and loaded into memory.
        pub loaded_symbols: bool,
        /// If we tried to parse the symbols, but failed.
        pub corrupt_symbols: bool,
    }
}