1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
//! Generic CBOR tokenization.

use core::fmt;
use crate::Decoder;
use crate::data::{Tag, Type};
use crate::decode::Error;

/// Representation of possible CBOR tokens.
///
/// *Requires feature* `"half"`.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Token<'b> {
    Bool(bool),
    U8(u8),
    U16(u16),
    U32(u32),
    U64(u64),
    I8(i8),
    I16(i16),
    I32(i32),
    I64(i64),
    F16(f32),
    F32(f32),
    F64(f64),
    Bytes(&'b [u8]),
    String(&'b str),
    Array(u64),
    Map(u64),
    Tag(Tag),
    Simple(u8),
    Break,
    Null,
    Undefined,
    /// Start of indefinite byte string.
    BeginBytes,
    /// Start of indefinite text string.
    BeginString,
    /// Start of indefinite array.
    BeginArray,
    /// Start of indefinite map.
    BeginMap
}

/// An [`Iterator`] over CBOR tokens.
///
/// The `Iterator` implementation calls [`Tokenizer::token`] until
/// [`Error::EndOfInput`] is returned which is mapped to `None`.
///
/// *Requires feature* `"half"`.
#[derive(Debug, Clone)]
pub struct Tokenizer<'b> {
    decoder: Decoder<'b>
}

impl<'b> Iterator for Tokenizer<'b> {
    type Item = Result<Token<'b>, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.token() {
            Ok(t) => Some(Ok(t)),
            Err(Error::EndOfInput) => None,
            Err(e) => Some(Err(e))
        }
    }
}

impl<'b> From<Decoder<'b>> for Tokenizer<'b> {
    fn from(d: Decoder<'b>) -> Self {
        Tokenizer { decoder: d }
    }
}

impl<'b> Tokenizer<'b> {
    /// Create a new Tokenizer for the given input bytes.
    pub fn new(bytes: &'b[u8]) -> Self {
        Tokenizer { decoder: Decoder::new(bytes) }
    }

    /// Decode the next token.
    ///
    /// Note that a sequence of tokens may not necessarily represent
    /// well-formed CBOR items.
    pub fn token(&mut self) -> Result<Token<'b>, Error> {
        match self.decoder.datatype()? {
            Type::Bool        => self.decoder.bool().map(Token::Bool),
            Type::U8          => self.decoder.u8().map(Token::U8),
            Type::U16         => self.decoder.u16().map(Token::U16),
            Type::U32         => self.decoder.u32().map(Token::U32),
            Type::U64         => self.decoder.u64().map(Token::U64),
            Type::I8          => self.decoder.i8().map(Token::I8),
            Type::I16         => self.decoder.i16().map(Token::I16),
            Type::I32         => self.decoder.i32().map(Token::I32),
            Type::I64         => self.decoder.i64().map(Token::I64),
            Type::F16         => self.decoder.f16().map(Token::F16),
            Type::F32         => self.decoder.f32().map(Token::F32),
            Type::F64         => self.decoder.f64().map(Token::F64),
            Type::Bytes       => self.decoder.bytes().map(Token::Bytes),
            Type::String      => self.decoder.str().map(Token::String),
            Type::Tag         => self.decoder.tag().map(Token::Tag),
            Type::Simple      => self.decoder.simple().map(Token::Simple),
            Type::Array       => self.decoder.array().map(|n| Token::Array(n.expect("array len"))),
            Type::Map         => self.decoder.map().map(|n| Token::Map(n.expect("map len"))),
            Type::BytesIndef  => { self.skip_byte(); Ok(Token::BeginBytes)  }
            Type::StringIndef => { self.skip_byte(); Ok(Token::BeginString) }
            Type::ArrayIndef  => { self.skip_byte(); Ok(Token::BeginArray)  }
            Type::MapIndef    => { self.skip_byte(); Ok(Token::BeginMap)    }
            Type::Null        => { self.skip_byte(); Ok(Token::Null)        }
            Type::Undefined   => { self.skip_byte(); Ok(Token::Undefined)   }
            Type::Break       => { self.skip_byte(); Ok(Token::Break)       }
            Type::Unknown(n)  => Err(Error::TypeMismatch(n, "unknown cbor type"))
        }
    }

    fn skip_byte(&mut self) {
        self.decoder.set_position(self.decoder.position() + 1)
    }
}

#[cfg(feature = "std")]
impl fmt::Display for Tokenizer<'_> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        /// Control stack element.
        enum E {
            N,               // get next token
            T,               // tag
            A(Option<u64>),  // array
            M(Option<u64>),  // map
            B,               // indefinite bytes
            D,               // indefinite text
            S(&'static str), // display string
            X(&'static str)  // display string (unless next token is BREAK)
        }

        let mut iter = Tokenizer::from(self.decoder.clone()).peekable();
        let mut stack = Vec::new();

        while iter.peek().is_some() {
            stack.push(E::N);
            while let Some(elt) = stack.pop() {
                match elt {
                    E::N => match iter.next() {
                        Some(Ok(Token::Array(n))) => {
                            stack.push(E::A(Some(n)));
                            f.write_str("[")?
                        }
                        Some(Ok(Token::Map(n))) => {
                            stack.push(E::M(Some(n)));
                            f.write_str("{")?
                        }
                        Some(Ok(Token::BeginArray)) => {
                            stack.push(E::A(None));
                            f.write_str("[_ ")?
                        }
                        Some(Ok(Token::BeginMap)) => {
                            stack.push(E::M(None));
                            f.write_str("{_ ")?
                        }
                        Some(Ok(Token::BeginBytes)) => if let Some(Ok(Token::Break)) = iter.peek() {
                            iter.next();
                            f.write_str("''_")?
                        } else {
                            stack.push(E::B);
                            f.write_str("(_ ")?
                        }
                        Some(Ok(Token::BeginString)) => if let Some(Ok(Token::Break)) = iter.peek() {
                            iter.next();
                            f.write_str("\"\"_")?
                        } else {
                            stack.push(E::D);
                            f.write_str("(_ ")?
                        }
                        Some(Ok(Token::Tag(t))) => {
                            stack.push(E::T);
                            write!(f, "{}(", t.numeric())?
                        }
                        Some(Ok(t))  => t.fmt(f)?,
                        Some(Err(e)) => {
                            write!(f, " !!! decoding error: {}", e)?;
                            return Ok(())
                        }
                        None => continue
                    }
                    E::S(s) => f.write_str(s)?,
                    E::X(s) => match iter.peek() {
                        Some(Ok(Token::Break)) | None => continue,
                        Some(Ok(_))  => f.write_str(s)?,
                        Some(Err(e)) => {
                            write!(f, " !!! decoding error: {}", e)?;
                            return Ok(())
                        }
                    }
                    E::T => {
                        stack.push(E::S(")"));
                        stack.push(E::N)
                    }
                    E::A(Some(0)) => f.write_str("]")?,
                    E::A(Some(1)) => {
                        stack.push(E::A(Some(0)));
                        stack.push(E::N)
                    }
                    E::A(Some(n)) => {
                        stack.push(E::A(Some(n - 1)));
                        stack.push(E::S(", "));
                        stack.push(E::N)
                    }
                    E::A(None) => if let Some(Ok(Token::Break)) = iter.peek() {
                        iter.next();
                        f.write_str("]")?
                    } else {
                        stack.push(E::A(None));
                        stack.push(E::X(", "));
                        stack.push(E::N)
                    }
                    E::M(Some(0)) => f.write_str("}")?,
                    E::M(Some(1)) => {
                        stack.push(E::M(Some(0)));
                        stack.push(E::N);
                        stack.push(E::S(": "));
                        stack.push(E::N)
                    }
                    E::M(Some(n)) => {
                        stack.push(E::M(Some(n - 1)));
                        stack.push(E::S(", "));
                        stack.push(E::N);
                        stack.push(E::S(": "));
                        stack.push(E::N)
                    }
                    E::M(None) => if let Some(Ok(Token::Break)) = iter.peek() {
                        iter.next();
                        f.write_str("}")?
                    } else {
                        stack.push(E::M(None));
                        stack.push(E::X(", "));
                        stack.push(E::N);
                        stack.push(E::S(": "));
                        stack.push(E::N)
                    }
                    E::B => if let Some(Ok(Token::Break)) = iter.peek() {
                        iter.next();
                        f.write_str(")")?
                    } else {
                        stack.push(E::B);
                        stack.push(E::X(", "));
                        stack.push(E::N)
                    }
                    E::D => if let Some(Ok(Token::Break)) = iter.peek() {
                        iter.next();
                        f.write_str(")")?
                    } else {
                        stack.push(E::D);
                        stack.push(E::X(", "));
                        stack.push(E::N)
                    }
                }
            }
        }

        Ok(())
    }
}

/// Pretty print a token.
///
/// Since we only show a single token we can not use diagnostic notation
/// as in the `Display` impl of [`Tokenizer`]. Instead, the following
/// syntax is used:
///
/// - Numeric values and booleans are displayed as in Rust. Floats are always
///   shown in scientific notation.
/// - Text strings are displayed in double quotes.
/// - Byte strings are displayed in single quotes prefixed with `h` and
///   hex-encoded, e.g. `h'01 02 ef'`.
/// - An array is displayed as `A[n]` where `n` denotes the number of elements.
///   The following `n` tokens are elements of this array.
/// - A map is displayed as `M[n]` where `n` denotes the number of pairs.
///   The following `n` tokens are entries of this map.
/// - Tags are displayed with `T(t)` where `t` is the tag number.
/// - Simple values are displayed as `simple(n)` where `n` denotes the numeric
///   value.
/// - Indefinite items start with:
///     * `?B[` for byte strings,
///     * `?S[` for text strings,
///     * `?A[` for arrays,
///     * `?M[` for maps,
///   and end with `]` when a `Token::Break` is encountered. All tokens
///   in between belong to the indefinite container.
/// - `Token::Null` is displayed as `null` and `Token::Undefined` as `undefined`.
impl fmt::Display for Token<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Token::Bool(b)     => write!(f, "{}", b),
            Token::U8(n)       => write!(f, "{}", n),
            Token::U16(n)      => write!(f, "{}", n),
            Token::U32(n)      => write!(f, "{}", n),
            Token::U64(n)      => write!(f, "{}", n),
            Token::I8(n)       => write!(f, "{}", n),
            Token::I16(n)      => write!(f, "{}", n),
            Token::I32(n)      => write!(f, "{}", n),
            Token::I64(n)      => write!(f, "{}", n),
            Token::F16(n)      => write!(f, "{:e}", n),
            Token::F32(n)      => write!(f, "{:e}", n),
            Token::F64(n)      => write!(f, "{:e}", n),
            Token::String(n)   => write!(f, "\"{}\"", n),
            Token::Array(n)    => write!(f, "A[{}]", n),
            Token::Map(n)      => write!(f, "M[{}]", n),
            Token::Tag(t)      => write!(f, "T({})", t.numeric()),
            Token::Simple(n)   => write!(f, "simple({})", n),
            Token::Break       => f.write_str("]"),
            Token::Null        => f.write_str("null"),
            Token::Undefined   => f.write_str("undefined"),
            Token::BeginBytes  => f.write_str("?B["),
            Token::BeginString => f.write_str("?S["),
            Token::BeginArray  => f.write_str("?A["),
            Token::BeginMap    => f.write_str("?M["),
            Token::Bytes(b)    => {
                f.write_str("h'")?;
                let mut i = b.len();
                for x in *b {
                    if i > 1 {
                        write!(f, "{:02x} ", x)?
                    } else {
                        write!(f, "{:02x}", x)?
                    }
                    i -= 1;
                }
                f.write_str("'")
            }
        }
    }
}