1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
//! Miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed
//! via the `RingBuffer` and `PCMRingBuffer` APIs. The `RingBuffer` API operats on bytes, whereas
//! the `PCMRingBuffer` operates on PCM frames. They are otherwise identical as `PCMRingBuffer` is
//! just a wrapper around `RingBuffer`.

use crate::base::{from_bool32, Error};
use miniaudio_sys as sys;
use std::os::raw::c_void;
use std::ptr::NonNull;
use std::sync::Arc;

#[repr(transparent)]
#[derive(Debug)]
pub(crate) struct RingBuffer<T: Clone> {
    inner: sys::ma_rb,
    _buffer_type: std::marker::PhantomData<T>,
}

impl<T: Clone> RingBuffer<T> {
    pub(crate) fn split(self) -> (RingBufferSend<T>, RingBufferRecv<T>) {
        let wrapped = Arc::new(self);
        let recv = RingBufferRecv {
            inner: Arc::clone(&wrapped),
        };
        let send = RingBufferSend { inner: wrapped };
        (send, recv)
    }

    pub(crate) fn create_pair(
        subbuffer_len: usize,
        subbuffer_count: usize,
    ) -> Result<(RingBufferSend<T>, RingBufferRecv<T>), Error> {
        RingBuffer::new(subbuffer_len, subbuffer_count).map(Self::split)
    }

    pub(crate) fn create_pair_preallocated(
        subbuffer_len: usize,
        subbufer_count: usize,
        subbffer_stride_in_bytes: usize,
        preallocated: Box<[T]>,
    ) -> Result<(RingBufferSend<T>, RingBufferRecv<T>), Error> {
        RingBuffer::new_preallocated(
            subbuffer_len,
            subbufer_count,
            subbffer_stride_in_bytes,
            preallocated,
        )
        .map(Self::split)
    }

    pub(crate) fn new(
        subbuffer_len: usize,
        subbuffer_count: usize,
    ) -> Result<RingBuffer<T>, Error> {
        let size_in_bytes = std::mem::size_of::<T>() * subbuffer_len;
        let stride_in_bytes = std::mem::size_of::<T>() * subbuffer_len;

        unsafe { Self::new_raw(size_in_bytes, subbuffer_count, stride_in_bytes, None) }
    }

    pub(crate) fn new_preallocated(
        subbuffer_len: usize,
        subbuffer_count: usize,
        mut subbuffer_stride_in_bytes: usize,
        preallocated: Box<[T]>,
    ) -> Result<RingBuffer<T>, Error> {
        let subbuffer_size_in_bytes = std::mem::size_of::<T>() * subbuffer_len;

        if subbuffer_stride_in_bytes < subbuffer_size_in_bytes {
            subbuffer_stride_in_bytes = subbuffer_size_in_bytes;
        }

        if subbuffer_count * subbuffer_stride_in_bytes
            != preallocated.len() * std::mem::size_of::<T>()
        {
            ma_debug_panic!("preallocated buffer size too small for arguments");
            return Err(Error::InvalidArgs);
        }

        unsafe {
            let preallocated_ptr_slice = Box::into_raw(preallocated);
            let preallocated_ptr = (*preallocated_ptr_slice).as_mut_ptr();
            let result = Self::new_raw(
                subbuffer_size_in_bytes,
                subbuffer_count,
                subbuffer_stride_in_bytes,
                NonNull::new(preallocated_ptr).map(NonNull::cast),
            );

            // If an error occurred, we need to drop the box.
            if result.is_err() {
                drop(Box::from_raw(preallocated_ptr_slice));
            }

            result
        }
    }

    unsafe fn new_raw(
        subbuffer_size_in_bytes: usize,
        subbuffer_count: usize,
        subbuffer_stride_in_bytes: usize,
        preallocated_buffer: Option<NonNull<()>>,
    ) -> Result<RingBuffer<T>, Error> {
        let mut ring_buffer = std::mem::MaybeUninit::<sys::ma_rb>::uninit();

        let result = sys::ma_rb_init_ex(
            subbuffer_size_in_bytes,
            subbuffer_count,
            subbuffer_stride_in_bytes,
            preallocated_buffer
                .map(|p| p.cast().as_ptr())
                .unwrap_or(std::ptr::null_mut()),
            std::ptr::null(),
            ring_buffer.as_mut_ptr(),
        );

        map_result!(
            result,
            RingBuffer {
                inner: ring_buffer.assume_init(),
                _buffer_type: std::marker::PhantomData,
            }
        )
    }

    /// Used to retrieve a section of the ring buffer for reading. You specify the number of items
    /// you would like to read and a slice with the number of requested items (or less if the
    /// buffer needs to wrap), will be passed to the given closure.
    pub(crate) fn read<F>(&self, count_requested: usize, f: F) -> usize
    where
        F: FnOnce(&[T]),
    {
        let mut bytes = count_requested * std::mem::size_of::<T>();
        let mut buf_ptr: *mut c_void = std::ptr::null_mut();
        let acquire_result = unsafe {
            sys::ma_rb_acquire_read(&self.inner as *const _ as *mut _, &mut bytes, &mut buf_ptr)
        };

        // This shouldn't fail because our arguments are valid, but we debug assert just to be sure.
        debug_assert!(acquire_result == 0);
        debug_assert!(bytes % std::mem::size_of::<T>() == 0);

        let count = bytes / std::mem::size_of::<T>();

        if count == 0 || buf_ptr.is_null() {
            f(&[]);
            return 0;
        }

        let items = unsafe { std::slice::from_raw_parts(buf_ptr.cast::<T>(), count) };

        f(items);

        let commit_result =
            unsafe { sys::ma_rb_commit_read(&self.inner as *const _ as *mut _, bytes, buf_ptr) };

        // This shouldn't fail because our arguments are valid, but we debug assert just to be sure.
        debug_assert!(commit_result == 0);

        count
    }

    /// Used to retrieve a section of the ring buffer for writing. You specify the number of items
    /// you would like to write to and a slice with the number of requested items (or less if the
    /// buffer needs to wrap), will be passed to the given closure.
    pub(crate) fn write<F>(&self, count_requested: usize, f: F) -> usize
    where
        F: FnOnce(&mut [T]),
    {
        let mut bytes = count_requested * std::mem::size_of::<T>();
        let mut buf_ptr: *mut c_void = std::ptr::null_mut();
        let acquire_result = unsafe {
            sys::ma_rb_acquire_write(&self.inner as *const _ as *mut _, &mut bytes, &mut buf_ptr)
        };

        // This shouldn't fail because our arguments are valid, but we debug assert just to be sure.
        debug_assert!(acquire_result == 0);
        debug_assert!(bytes % std::mem::size_of::<T>() == 0);

        let count = bytes / std::mem::size_of::<T>();

        if count == 0 || buf_ptr.is_null() {
            f(&mut []);
            return 0;
        }

        let items = unsafe { std::slice::from_raw_parts_mut(buf_ptr.cast::<T>(), count) };

        f(items);

        let commit_result =
            unsafe { sys::ma_rb_commit_write(&self.inner as *const _ as *mut _, bytes, buf_ptr) };

        // This shouldn't fail because our arguments are valid, but we debug assert just to be sure.
        debug_assert!(commit_result == 0);

        count
    }

    // FIXME find out what to do with this and remove allow(dead_code).
    /// Returns the distance between the write pointer and the read pointer. Should never be
    /// negative for a correct program. Will return the number of items that can be read before the
    /// read pointer hits the write pointer.
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn pointer_distance(&self) -> usize {
        let byte_distance =
            unsafe { sys::ma_rb_pointer_distance(&self.inner as *const _ as *mut _) as usize };
        debug_assert!(byte_distance % std::mem::size_of::<T>() == 0);
        byte_distance / std::mem::size_of::<T>()
    }

    #[inline]
    pub(crate) fn available_read(&self) -> usize {
        let bytes_available =
            unsafe { sys::ma_rb_available_read(&self.inner as *const _ as *mut _) as usize };
        debug_assert!(bytes_available % std::mem::size_of::<T>() == 0);
        bytes_available / std::mem::size_of::<T>()
    }

    #[inline]
    pub(crate) fn available_write(&self) -> usize {
        let bytes_available =
            unsafe { sys::ma_rb_available_write(&self.inner as *const _ as *mut _) as usize };
        debug_assert!(bytes_available % std::mem::size_of::<T>() == 0);
        bytes_available / std::mem::size_of::<T>()
    }

    // FIXME find out what to do with this and remove allow(dead_code).
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn subbuffer_size(&self) -> usize {
        unsafe { sys::ma_rb_get_subbuffer_size(&self.inner as *const _ as *mut _) }
    }

    // FIXME find out what to do with this and remove allow(dead_code).
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn subbuffer_stride(&self) -> usize {
        unsafe { sys::ma_rb_get_subbuffer_stride(&self.inner as *const _ as *mut _) }
    }

    // FIXME document this (???)
    // FIXME find out what to do with this and remove allow(dead_code).
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn subbuffer_offset(&self, index: usize) -> usize {
        unsafe { sys::ma_rb_get_subbuffer_offset(&self.inner as *const _ as *mut _, index) }
    }

    // FIXME implement the seek_read and seek_write functions when I figure out what those are for
    // really.
}

unsafe impl<T: Send + Sized + Clone> Send for RingBuffer<T> {}
unsafe impl<T: Send + Sized + Clone> Sync for RingBuffer<T> {}

/// Be aware that it is not safe to have this being written to from multiple threads.
/// This is part of a **single producer** single consumer ring buffer.
pub struct RingBufferSend<T: Clone> {
    inner: Arc<RingBuffer<T>>,
}

impl<T: Clone> RingBufferSend<T> {
    /// Write a buffer of items into the ring buffer, returning the number of items that were
    /// successfully written.
    /// Be aware that it is not safe to have this being written to from multiple threads.
    /// This is part of a **single producer** single consumer ring buffer.
    pub fn write(&self, src: &[T]) -> usize {
        self.inner.write(src.len(), |dest| {
            dest.clone_from_slice(&src[0..dest.len()]);
        })
    }

    /// Used to retrieve a section of the ring buffer for writing. You specify the number of items
    /// you would like to write to and a slice with the number of requested items (or less if the
    /// buffer needs to wrap), will be passed to the given closure.
    pub fn write_with<F>(&self, count_requested: usize, f: F) -> usize
    where
        F: FnOnce(&mut [T]),
    {
        self.inner.write(count_requested, f)
    }

    /// Returns the number of items that are available for writing.
    pub fn available(&mut self) -> usize {
        self.inner.available_write()
    }
}

impl<T: Clone> Clone for RingBufferSend<T> {
    fn clone(&self) -> Self {
        RingBufferSend {
            inner: Arc::clone(&self.inner),
        }
    }
}

/// Be aware that it is not safe to have this being written to from multiple threads.
/// This is part of a single producer **single consumer** ring buffer.
pub struct RingBufferRecv<T: Clone> {
    inner: Arc<RingBuffer<T>>,
}

impl<T: Clone> RingBufferRecv<T> {
    /// Read a buffer of items from a ring buffer, returning the number of items that were
    /// successfully read.
    /// Be aware that it is not safe to have this being written to from multiple threads.
    /// This is part of a single producer **single consumer** ring buffer.
    pub fn read(&self, dest: &mut [T]) -> usize {
        self.inner.read(dest.len(), |src| {
            (&mut dest[0..src.len()]).clone_from_slice(src);
        })
    }

    /// Used to retrieve a section of the ring buffer for reading. You specify the number of items
    /// you would like to read and a slice with the number of requested items (or less if the
    /// buffer needs to wrap), will be passed to the given closure.
    pub fn read_with<F>(&self, count_requested: usize, f: F) -> usize
    where
        F: FnOnce(&[T]),
    {
        self.inner.read(count_requested, f)
    }

    /// Returns the number of items that are available for reading.
    pub fn available(&mut self) -> usize {
        self.inner.available_read()
    }
}

impl<T: Clone> Clone for RingBufferRecv<T> {
    fn clone(&self) -> Self {
        RingBufferRecv {
            inner: Arc::clone(&self.inner),
        }
    }
}

impl<T: Clone> Drop for RingBuffer<T> {
    fn drop(&mut self) {
        unsafe {
            let buffer_ptr = self.inner.pBuffer;
            let count = self.inner.subbufferCount;
            let owns_buffer = from_bool32(self.inner.ownsBuffer());

            sys::ma_rb_uninit(&mut self.inner);

            // If the buffer was not created by miniaudio we drop it from Rust.
            if !owns_buffer && !buffer_ptr.is_null() {
                let preallocated_slice = std::slice::from_raw_parts_mut(buffer_ptr, count as usize);
                let _preallocated_box = Box::from_raw(preallocated_slice.as_mut_ptr());
            }
        };
    }
}

/// Create a sender/receiver pair for a single producer single consumer ring buffer.
/// `subbfer_len` is the number of items that should be contained in each subbffer, and
/// `subbuffer_count` is the number of subbffers that are used to swap data between the
/// sender and receiver.
pub fn ring_buffer<T: Clone + Send>(
    subbuffer_len: usize,
    subbuffer_count: usize,
) -> Result<(RingBufferSend<T>, RingBufferRecv<T>), Error> {
    RingBuffer::create_pair(subbuffer_len, subbuffer_count)
}

/// Create a sender/receiver pair for a single producer single consumer ring buffer using
/// a preallocated buffer for items. `subbfer_len` is the number of items that should be contained in each subbffer, and
/// `subbuffer_count` is the number of subbffers that are used to swap data between the
/// sender and receiver.
pub fn ring_buffer_preallocated<T: Clone + Send>(
    subbuffer_len: usize,
    subbuffer_count: usize,
    subbuffer_stride_in_bytes: usize,
    preallocated: Box<[T]>,
) -> Result<(RingBufferSend<T>, RingBufferRecv<T>), Error> {
    RingBuffer::create_pair_preallocated(
        subbuffer_len,
        subbuffer_count,
        subbuffer_stride_in_bytes,
        preallocated,
    )
}