1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! Miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed
//! via the `RingBuffer` and `PCMRingBuffer` APIs. The `RingBuffer` API operats on bytes, whereas
//! the `PCMRingBuffer` operates on PCM frames. They are otherwise identical as `PCMRingBuffer` is
//! just a wrapper around `RingBuffer`.

use crate::base::{from_bool32, Error};
use miniaudio_sys as sys;
use std::os::raw::c_void;
use std::ptr::NonNull;

#[repr(transparent)]
#[derive(Debug)]
pub struct RingBuffer<T: Sized> {
    inner: sys::ma_rb,
    _buffer_type: std::marker::PhantomData<T>,
}

impl<T: Sized> RingBuffer<T> {
    pub fn new(count: usize) -> Result<RingBuffer<T>, Error> {
        let stride_in_bytes = std::mem::size_of::<T>();
        let size_in_bytes = count * stride_in_bytes;

        unsafe { Self::new_raw(size_in_bytes, count, stride_in_bytes, None) }
    }

    pub fn new_preallocated(preallocated: Box<[T]>) -> Result<RingBuffer<T>, Error> {
        let count = preallocated.len();
        let stride_in_bytes = std::mem::size_of::<T>();
        let size_in_bytes = count * stride_in_bytes;
        let preallocated_ptr_slice = Box::into_raw(preallocated);

        unsafe {
            let preallocated_ptr = (*preallocated_ptr_slice).as_mut_ptr();
            let result = Self::new_raw(
                size_in_bytes,
                count,
                stride_in_bytes,
                NonNull::new(preallocated_ptr).map(NonNull::cast),
            );

            // If an error occurred, we need to drop the box.
            if let &Err(_) = &result {
                drop(Box::from_raw(preallocated_ptr_slice));
            }

            result
        }
    }

    unsafe fn new_raw(
        subbuffer_size_in_bytes: usize,
        subbuffer_count: usize,
        subbuffer_stride_in_bytes: usize,
        preallocated_buffer: Option<NonNull<()>>,
    ) -> Result<RingBuffer<T>, Error> {
        let mut ring_buffer = std::mem::MaybeUninit::<sys::ma_rb>::uninit();

        let result = sys::ma_rb_init_ex(
            subbuffer_size_in_bytes,
            subbuffer_count,
            subbuffer_stride_in_bytes,
            preallocated_buffer
                .map(|p| p.cast().as_ptr())
                .unwrap_or(std::ptr::null_mut()),
            std::ptr::null(),
            ring_buffer.as_mut_ptr(),
        );

        map_result!(
            result,
            RingBuffer {
                inner: ring_buffer.assume_init(),
                _buffer_type: std::marker::PhantomData,
            }
        )
    }

    pub fn read<F>(&self, count_requested: usize, f: F) -> Result<usize, Error>
    where
        F: FnOnce(&[T]),
    {
        let mut bytes = count_requested * std::mem::size_of::<T>();
        let mut buf_ptr: *mut c_void = std::ptr::null_mut();
        let acquire_result = unsafe {
            sys::ma_rb_acquire_read(&self.inner as *const _ as *mut _, &mut bytes, &mut buf_ptr)
        };
        debug_assert!(bytes % std::mem::size_of::<T>() == 0);
        let count = bytes / std::mem::size_of::<T>();

        if count == 0 || buf_ptr.is_null() {
            f(&[]);
            return Ok(0);
        }

        let items = map_result!(acquire_result, unsafe {
            std::slice::from_raw_parts(buf_ptr.cast::<T>(), count)
        })?;

        f(items);

        map_result!(
            unsafe { sys::ma_rb_commit_read(&self.inner as *const _ as *mut _, bytes, buf_ptr) },
            count
        )
    }

    pub fn write<F>(&self, count_requested: usize, f: F) -> Result<usize, Error>
    where
        F: FnOnce(&mut [T]),
    {
        let mut bytes = count_requested * std::mem::size_of::<T>();
        let mut buf_ptr: *mut c_void = std::ptr::null_mut();
        let acquire_result = unsafe {
            sys::ma_rb_acquire_write(&self.inner as *const _ as *mut _, &mut bytes, &mut buf_ptr)
        };
        debug_assert!(bytes % std::mem::size_of::<T>() == 0);
        let count = bytes / std::mem::size_of::<T>();

        if count == 0 || buf_ptr.is_null() {
            f(&mut []);
            return Ok(0);
        }

        let items = map_result!(acquire_result, unsafe {
            std::slice::from_raw_parts_mut(buf_ptr.cast::<T>(), count)
        })?;

        f(items);

        map_result!(
            unsafe { sys::ma_rb_commit_write(&self.inner as *const _ as *mut _, bytes, buf_ptr) },
            count
        )
    }

    /// Returns the distance between the write pointer and the read pointer. Should never be
    /// negative for a correct program. Will return the number of items that can be read before the
    /// read pointer hits the write pointer.
    #[inline]
    pub fn pointer_distance(&self) -> usize {
        let byte_distance =
            unsafe { sys::ma_rb_pointer_distance(&self.inner as *const _ as *mut _) as usize };
        debug_assert!(byte_distance % std::mem::size_of::<T>() == 0);
        byte_distance / std::mem::size_of::<T>()
    }

    #[inline]
    pub fn available_read(&self) -> usize {
        let bytes_available =
            unsafe { sys::ma_rb_available_read(&self.inner as *const _ as *mut _) as usize };
        debug_assert!(bytes_available % std::mem::size_of::<T>() == 0);
        bytes_available / std::mem::size_of::<T>()
    }

    #[inline]
    pub fn available_write(&self) -> usize {
        let bytes_available =
            unsafe { sys::ma_rb_available_write(&self.inner as *const _ as *mut _) as usize };
        debug_assert!(bytes_available % std::mem::size_of::<T>() == 0);
        bytes_available / std::mem::size_of::<T>()
    }

    #[inline]
    pub fn subbuffer_size(&self) -> usize {
        unsafe { sys::ma_rb_get_subbuffer_size(&self.inner as *const _ as *mut _) }
    }

    #[inline]
    pub fn subbuffer_stride(&self) -> usize {
        unsafe { sys::ma_rb_get_subbuffer_stride(&self.inner as *const _ as *mut _) }
    }

    // FIXME document this (???)
    #[inline]
    pub fn subbuffer_offset(&self, index: usize) -> usize {
        unsafe { sys::ma_rb_get_subbuffer_offset(&self.inner as *const _ as *mut _, index) }
    }

    // FIXME implement the seek_read and seek_write functions when I figure out what those are for
    // really.
}

unsafe impl<T: Send + Sized> Send for RingBuffer<T> {}
unsafe impl<T: Sync + Sized> Sync for RingBuffer<T> {}

impl<T> Drop for RingBuffer<T> {
    fn drop(&mut self) {
        unsafe {
            let buffer_ptr = self.inner.pBuffer;
            let count = self.inner.subbufferCount;
            let owns_buffer = from_bool32(self.inner.ownsBuffer());

            sys::ma_rb_uninit(&mut self.inner);

            // If the buffer was not created by miniaudio we drop it from Rust.
            if !owns_buffer && !buffer_ptr.is_null() {
                let preallocated_slice = std::slice::from_raw_parts_mut(buffer_ptr, count as usize);
                let _preallocated_box = Box::from_raw(preallocated_slice.as_mut_ptr());
            }
        };
    }
}

// FIXME remove this since it's probably useless (in Rust anyway).
#[deprecated = "Instead of using this, just use RingBuffer with the frame type as the type parameter."]
#[repr(transparent)]
#[derive(Debug)]
pub struct PCMRingBuffer(sys::ma_pcm_rb);