1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
use image::DynamicImage;
use image::GenericImageView;
use image::GrayImage;
use image::Luma;
use image::Rgba;
use imageproc::rect::Rect;
use std::collections::HashMap;
use std::collections::HashSet;
use std::convert::TryFrom;

const MAP_BORDER_IMG: &[u8] = include_bytes!("../assets/map_border_x4.png");

/// Result of detect_map function: coordinates of the map in the image, and various cropped
/// versions of the map.
pub struct DetectedMap {
    pub bounding_box: Rect,
    pub img_with_bounding_box: DynamicImage,
    pub cropped_img: DynamicImage,
    pub cropped_scaled_img: DynamicImage,
}

pub fn detect_map(original_img: &DynamicImage) -> Option<DetectedMap> {
    let template = image::load_from_memory(MAP_BORDER_IMG).unwrap();
    // Make a copy of the input image, the bounding boxes will be drawn here
    let mut img = original_img.clone();

    if let Some(scale_translate) = rectilinear_shapes_match_template(&mut img, &template) {
        let red_rectangle_template = Rect::at(140, 140).of_size(371 - 140 + 1, 371 - 140 + 1);
        let bounding_box = scale_translate.apply_rect(&red_rectangle_template);
        imageproc::drawing::draw_hollow_rect_mut(&mut img, bounding_box, Rgba([255, 0, 0, 255]));

        let cropped_img = crop_image_to_rect_with_padding(original_img, &bounding_box);
        // TODO: before scaling down, we should detect the red cross and the white player position,
        // and any other markers or corrupted pixels. A simple way to do this would be to partition
        // the cropped image into 128x128 pixels and assign a score to each pixel based on the
        // number of edges or number of different colors.

        // Scale the image to map resolution. 1 pixel in this image = 1 pixel on the map
        // This uses nearest neighbor interpolation, meaning that the output pixel is calculated
        // from one input pixel at the center of the image. It seems to be good enough, but if it
        // fails for some input try to apply a 3x3 median filter before scaling to remove noise.
        let cropped_scaled_img =
            cropped_img.resize_exact(128, 128, image::imageops::FilterType::Nearest);

        let img_with_bounding_box = img;

        Some(DetectedMap {
            bounding_box,
            cropped_img,
            cropped_scaled_img,
            img_with_bounding_box,
        })
    } else {
        None
    }
}

// TODO: this function name is a lie, it just panics on out of bounds access
fn crop_image_to_rect_with_padding(img: &DynamicImage, rect: &Rect) -> DynamicImage {
    // TODO: handle rect out of bounds by adding black pixels as padding
    img.crop_imm(
        u32::try_from(rect.left()).unwrap(),
        u32::try_from(rect.top()).unwrap(),
        rect.width(),
        rect.height(),
    )
}

// Returns the bounding box of the template in img coords. Also, draws green rectangles around the
// matches pieces of the template, and yellow rectangles around the missing pieces
pub fn rectilinear_shapes_match_template(
    img: &mut DynamicImage,
    template: &DynamicImage,
) -> Option<ScaleTranslate> {
    // TODO: currently the shapes are only extracted from the red channel
    // in other words, green and blue channels are ignored
    let template_shapes = {
        let img = template;
        let (img_r, _img_g, _img_b) = split_image_into_channels(img);

        let sobel_r = imageproc::gradients::sobel_gradients(&img_r);
        // Calculate inverse image: 255 means no border
        let inverse_sobel_thres_r = imageproc::map::map_colors(&sobel_r, |p| {
            let p = u8::try_from(p[0] / 8).unwrap();
            if p > 0 {
                Luma([0])
            } else {
                Luma([255])
            }
        });

        extract_polygons_with_no_holes(inverse_sobel_thres_r)
    };

    let img_shapes = {
        let (img_r, _img_g, _img_b) = split_image_into_channels(img);

        let sobel_r = imageproc::gradients::sobel_gradients(&img_r);
        // Calculate inverse image: 255 means no border
        let inverse_sobel_thres_r = imageproc::map::map_colors(&sobel_r, |p| {
            let p = u8::try_from(p[0] / 8).unwrap();
            if p > 0 {
                Luma([0])
            } else {
                Luma([255])
            }
        });

        extract_polygons_with_no_holes(inverse_sobel_thres_r)
    };

    // Index the img shapes by shape descriptor
    let mut shapes_map: HashMap<Vec<Direction>, Vec<(&RectPolygon, Rect)>> = HashMap::new();
    for poly in &img_shapes {
        let shape_descr = poly.shape_descriptor();
        let mut bb = poly.bounding_box();
        add_margin_to_rect(&mut bb);
        shapes_map.entry(shape_descr).or_default().push((poly, bb));
    }

    let mut best_template_to_image = None;

    // For each shape that is expected to be found, check all the shapes with this shape descriptor
    // in img_shapes
    for poly in &template_shapes {
        let shape_descr = poly.shape_descriptor();
        // Ignore rectangular shapes
        if shape_descr
            == [
                Direction::Right,
                Direction::Down,
                Direction::Left,
                Direction::Up,
            ]
        {
            continue;
        }
        let mut poly_bb = poly.bounding_box();
        add_margin_to_rect(&mut poly_bb);
        for (_cand_poly, cand_bb) in shapes_map
            .get(&shape_descr)
            .map(|x| x.as_slice())
            .unwrap_or_default()
        {
            // To check if this is a good candidate, calculate the transformation required to
            // convert template coordinates to img coordinates, and look if the other pieces are
            // where they should be
            let template_to_image = ScaleTranslate::from_rect_to_rect(&poly_bb, cand_bb);

            // Skip non-square transformations
            let scale_ratio = template_to_image.scale.0 / template_to_image.scale.1;
            if scale_ratio < 0.5 || scale_ratio > 1.5 {
                continue;
            }

            let small_bb_side = smaller_side(&cand_bb);
            let (score, found_pieces) = find_matching_pieces_using_transform(
                &shapes_map,
                &template_shapes,
                &template_to_image,
                small_bb_side,
            );
            //println!("{:?} score {}", template_to_image, score);

            // TODO: set a score limit to avoid false positives
            let min_best_score = f32::INFINITY;
            let best_score = best_template_to_image
                .as_ref()
                .map(|(score, _)| *score)
                .unwrap_or(min_best_score);
            if score < best_score {
                best_template_to_image = Some((score, (template_to_image, found_pieces)));
            }
        }
    }

    if let Some((_score, (_template_to_image, found_pieces))) = best_template_to_image {
        // Try to improve the transformation using the found_pieces
        let template_to_image = precise_scale_translate_finder(&template_shapes, &found_pieces);

        for poly in &template_shapes {
            let mut poly_bb = poly.bounding_box();
            add_margin_to_rect(&mut poly_bb);
            let piece_bb = template_to_image.apply_rect(&poly_bb);
            imageproc::drawing::draw_hollow_rect_mut(img, piece_bb, Rgba([255, 255, 0, 255]));
        }
        for found_piece in found_pieces {
            if let Some((_piece, piece_bb)) = found_piece {
                imageproc::drawing::draw_hollow_rect_mut(img, piece_bb, Rgba([0, 255, 0, 255]));
            }
        }

        return Some(template_to_image);
    }

    None
}

/// Returns the length of the smaller side of the rectangle
fn smaller_side(rect: &Rect) -> u32 {
    std::cmp::min(rect.width(), rect.height())
}

// a in [b*(1-e), b*(1+e)]
fn approx_equal<T>(a: T, b: T, e: f64) -> bool
where
    f64: TryFrom<T>,
    <f64 as TryFrom<T>>::Error: std::fmt::Display,
    T: std::fmt::Display + Copy,
{
    let a = match f64::try_from(a) {
        Ok(x) => x,
        Err(e) => panic!("Cannot convert {} to f64: {}", a, e),
    };
    let b = match f64::try_from(b) {
        Ok(x) => x,
        Err(e) => panic!("Cannot convert {} to f64: {}", b, e),
    };
    let small = b * (1.0 - e);
    let big = b * (1.0 + e);

    small <= a && a <= big
}

fn find_matching_pieces_using_transform<'a>(
    shapes_map: &HashMap<Vec<Direction>, Vec<(&'a RectPolygon, Rect)>>,
    template_shapes: &[RectPolygon],
    template_to_image: &ScaleTranslate,
    small_bb_side: u32,
) -> (f32, Vec<Option<(&'a RectPolygon, Rect)>>) {
    // TODO: this threshold should depend on scale
    let threshold = small_bb_side as f32;
    // Penalty for missing piece
    let not_found_score = 1.0;
    let mut total_score = 0.0;
    let mut found_pieces = vec![];
    for poly in template_shapes {
        found_pieces.push(None);
        let shape_descr = poly.shape_descriptor();
        let mut poly_bb = poly.bounding_box();
        add_margin_to_rect(&mut poly_bb);

        let expected_img_bb = template_to_image.apply_rect(&poly_bb);

        let mut best_piece = None;

        for (cand_poly, cand_bb) in shapes_map
            .get(&shape_descr)
            .map(|x| x.as_slice())
            .unwrap_or_default()
        {
            // The scale ratio between bounding boxes should be close to 1.0
            // Allow 90% error margin: accept scale ratios between 0.1 and 1.9
            let scale_ratio = ScaleTranslate::from_rect_to_rect(&cand_bb, &expected_img_bb);
            if !approx_equal(scale_ratio.scale.0, 1.0, 0.9) {
                continue;
            }
            if !approx_equal(scale_ratio.scale.1, 1.0, 0.9) {
                continue;
            }
            // Allow 10% error margin for the size of the smaller side of the bounding box
            if !approx_equal(smaller_side(&cand_bb), small_bb_side, 0.1) {
                continue;
            }

            // Score: distance between expected point and actual point
            let mut score = distance_between_start_of_rects(&expected_img_bb, &cand_bb);
            score += distance_between_end_of_rects(&expected_img_bb, &cand_bb);
            if best_piece.is_none() {
                best_piece = Some((score, (cand_poly, cand_bb)));
            } else {
                let best_score = best_piece.as_ref().unwrap().0;
                if score < best_score {
                    best_piece = Some((score, (cand_poly, cand_bb)));
                }
            }
        }

        if let Some((score, (cand_poly, cand_bb))) = best_piece {
            if score < threshold {
                //total_score += score;
                total_score += 0.0;
                *found_pieces.last_mut().unwrap() = Some((*cand_poly, *cand_bb));
            } else {
                total_score += not_found_score;
            }
        } else {
            total_score += not_found_score;
        }
    }

    (total_score, found_pieces)
}

/// Returns the distance between the top-left corner of two rectangles
fn distance_between_start_of_rects(a: &Rect, b: &Rect) -> f32 {
    ((a.left() as f32 - b.left() as f32).powf(2.0) + (a.top() as f32 - b.top() as f32).powf(2.0))
        .powf(0.5)
}

/// Returns the distance between the bottom-right corner of two rectangles
fn distance_between_end_of_rects(a: &Rect, b: &Rect) -> f32 {
    ((a.right() as f32 - b.right() as f32).powf(2.0)
        + (a.bottom() as f32 - b.bottom() as f32).powf(2.0))
    .powf(0.5)
}

/// Add 1 pixel of margin to the rectangle. This increases the width and height by 2 units.
fn add_margin_to_rect(rect: &mut Rect) {
    *rect = Rect::at(rect.left() - 1, rect.top() - 1).of_size(rect.width() + 2, rect.height() + 2);
    //*rect = Rect::at(rect.left() - 1, rect.top() - 1).of_size(rect.width() + 1, rect.height() + 1);
}

fn precise_scale_translate_finder(
    template_shapes: &[RectPolygon],
    found_rects: &[Option<(&RectPolygon, Rect)>],
) -> ScaleTranslate {
    assert_eq!(template_shapes.len(), found_rects.len());

    // Get 2 points from each rect, from is template and to is found points
    let mut scale_from_x: Vec<i32> = vec![];
    let mut scale_from_y: Vec<i32> = vec![];
    let mut scale_to_x: Vec<i32> = vec![];
    let mut scale_to_y: Vec<i32> = vec![];
    for i in 0..template_shapes.len() {
        if let Some((_, rect)) = found_rects[i] {
            //scale_from.push(template_shapes[i].bounding_box());
            //scale_to.push(rect);
            let mut from_bb = template_shapes[i].bounding_box();
            add_margin_to_rect(&mut from_bb);
            let points_from = rect_to_corners(&from_bb);
            let points_to = rect_to_corners(&rect);

            scale_from_x.push(points_from[0].0);
            scale_from_x.push(points_from[1].0);
            scale_from_y.push(points_from[0].1);
            scale_from_y.push(points_from[1].1);
            scale_to_x.push(points_to[0].0);
            scale_to_x.push(points_to[1].0);
            scale_to_y.push(points_to[0].1);
            scale_to_y.push(points_to[1].1);
        }
    }

    // Now find a transform that can map all the points in scale_from to scale_to
    let (scale_x, offset_x) = linear_regression(&scale_from_x, &scale_to_x);
    let (scale_y, offset_y) = linear_regression(&scale_from_y, &scale_to_y);

    let transform = ScaleTranslate {
        scale: (scale_x, scale_y),
        translate: (offset_x, offset_y),
    };

    transform
}

// TODO: the problem is that we lost the fractional part of y
// (there are no half-pixels in the screenshot)
// So we don't want to find the line with smaller error
fn linear_regression(x: &[i32], y: &[i32]) -> (f32, f32) {
    assert_eq!(x.len(), y.len());
    let mut points = HashSet::with_capacity(x.len());
    // Remove duplicate points
    for i in 0..x.len() {
        points.insert((x[i], y[i]));
    }
    let mut x = Vec::with_capacity(points.len());
    let mut y = Vec::with_capacity(points.len());
    for (px, py) in points {
        x.push(px);
        y.push(py);
    }

    let x = &x;
    let y = &y;

    // Initial guess
    let (slope_guess, intercept_guess) = simple_linear_regression(x, y);
    //let (slope, intercept) = (0.0, 0.0);
    //println!("Initial guess: {:?}", (slope_guess, intercept_guess));

    // Try to improve the guess by using gradient descent
    let num_iterations = 10_000;
    // If the learning rate is too high, it may overshoot and return (NaN, Nan)
    let learning_rate = 1e-5;
    let (slope, intercept) = gradient_descent(
        x,
        y,
        slope_guess,
        intercept_guess,
        learning_rate,
        num_iterations,
    );
    //println!("Gradient descent guess: {:?}", (slope, intercept));

    if slope.is_nan() || intercept.is_nan() {
        panic!("Gradient descent failed, try reducing the learning rate");
    }

    //let y_pred: Vec<f32> = x.iter().copied().map(|x| (x as f32) * slope + intercept).collect();
    //let y_err: Vec<i32> = y.iter().zip(y_pred.iter()).map(|(y, y_pred)| (y_pred.round() as i32 - (*y))).collect();
    //println!("Errors: {:?}", y_err);

    (slope, intercept)
}

/// Basic implementation of gradient descent with constant learning rate to try to minimize the
/// loss function J
///
/// ```ignore
/// J = ReLU((m*x + n - y)**2 - 0.25)
/// ```
///
/// This means find a linear regression but ignore errors smaller than +/- 0.5 units
fn gradient_descent(
    x: &[i32],
    y: &[i32],
    initial_m: f32,
    initial_n: f32,
    initial_learning_rate: f32,
    num_iterations: u32,
) -> (f32, f32) {
    // Rectified Linear Unit
    // Used as ReLU(x**2 - 0.25) to ignore squared errors smaller than 0.25. This expands the y
    // coordinate of each point to +/- 0.5 its observed position, and it helps the linear
    // regression so is not limited to pixel accuracy.
    // ReLU(x) == max(x, 0)
    fn relu(x: f32) -> f32 {
        if x > 0.0 {
            x
        } else {
            0.0
        }
    }

    // This function is used as the derivative of ReLU(x**2 - 0.25), because when x in range
    // [-0.5, 0.5] then x**2 - 0.25 is negative, and ReLU(x**2 - 0.25) = 0, so the derivative is
    // also 0.
    // Note that mathematically there is no derivative at x=-0.5 and x=0.5 but this implementation
    // sets it to 1 at that points.
    fn in_error_range(x: f32) -> f32 {
        if x > -0.5 && x < 0.5 {
            0.0
        } else {
            1.0
        }
    }

    //println!("Starting gradient descent with m={} n={}\nx: {:?}\ny: {:?}", initial_m, initial_n, x, y);
    assert_eq!(x.len(), y.len());
    let sample_size = x.len() as f32;
    let mut m = initial_m;
    let mut n = initial_n;
    let learning_rate = initial_learning_rate;
    for _epoch in 0..num_iterations {
        // y_pred = x * m + n
        let y_pred: Vec<f32> = x.iter().copied().map(|x| (x as f32) * m + n).collect();
        let y_err: Vec<f32> = y
            .iter()
            .zip(y_pred.iter())
            .map(|(y, y_pred)| y_pred - (*y as f32))
            .collect();
        // derivative of error with respect to n
        let dn = 1.0 / sample_size
            * (0..x.len())
                .map(|i| in_error_range(y_err[i]) * y_err[i])
                .sum::<f32>();
        // derivative of error with respect to m
        let dm = 1.0 / sample_size
            * (0..x.len())
                .map(|i| in_error_range(y_err[i]) * y_err[i] * (x[i] as f32))
                .sum::<f32>();

        let _error_value = 1.0 / (2.0 * sample_size)
            * (0..x.len())
                .map(|i| relu(y_err[i] * y_err[i] - 0.25))
                .sum::<f32>();
        //println!("Error {}: m: {} n: {}", error_value, dm, dn);

        m -= learning_rate * dm;
        n -= learning_rate * dn;
        /*
        // Ignore learning rates, just increment values by 1e-6
        // This avoids overshooting problems
        let clap_abs = |x, l: f32| {
            if x > l { l } else if x < -l { -l } else { x }
        };
        let fixed_increment_rate = 1e-6;
        let dm = clap_abs(dm, fixed_increment_rate);
        let dn = clap_abs(dn, fixed_increment_rate);
        m -= dm;
        n -= dn;
        */

        if dn == 0.0 && dm == 0.0 {
            //println!("Early return from gradient descent");
            return (m, n);
        }
    }

    (m, n)
}

fn simple_linear_regression(x: &[i32], y: &[i32]) -> (f32, f32) {
    fn mean(x: &[i32]) -> f32 {
        let mut sum = 0.0;

        for a in x {
            sum += *a as f32;
        }

        sum / x.len() as f32
    }

    let average_x = mean(x);
    let average_y = mean(y);

    let (sx2, sxy) = {
        let mut variance = 0.0;
        let mut covariance = 0.0;

        for i in 0..x.len() {
            let t = x[i] as f32 - average_x;
            let u = y[i] as f32 - average_y;
            variance += t * t;
            covariance += t * u;
        }

        (variance, covariance)
    };

    let slope = sxy / sx2;
    let intercept = average_y - slope * average_x;

    (slope, intercept)
}

fn rect_from_points<I>(points: I) -> Rect
where
    I: IntoIterator<Item = (i32, i32)>,
{
    let mut iter = points.into_iter();
    let p0 = iter.next().unwrap();
    let mut r = Rect::at(p0.0, p0.1).of_size(1, 1);

    for p in iter {
        r = expand_rect_to_point(r, p);
    }

    r
}

fn rect_to_corners(rect: &Rect) -> [(i32, i32); 2] {
    // Convert rect to 2 points, the top-left and (bottom-right + 1)
    let top_left = (rect.left(), rect.top());
    // This should be (left() + width()), or right() + 1
    let bottom_right = ((rect.right() + 1), (rect.bottom() + 1));
    //let bottom_right = ((rect.right() + 0), (rect.bottom() + 0));

    [top_left, bottom_right]
}

#[derive(Debug)]
pub struct ScaleTranslate {
    scale: (f32, f32),
    translate: (f32, f32),
}

impl ScaleTranslate {
    pub fn from_rect_to_rect(from: &Rect, to: &Rect) -> Self {
        let scale = (
            (to.width() as f32 / from.width() as f32),
            (to.height() as f32 / from.height() as f32),
        );
        let translate = (
            -from.left() as f32 * scale.0 + to.left() as f32,
            -from.top() as f32 * scale.1 + to.top() as f32,
        );

        Self { scale, translate }
    }

    pub fn apply(&self, p: (f32, f32)) -> (f32, f32) {
        (
            p.0 * self.scale.0 + self.translate.0,
            p.1 * self.scale.1 + self.translate.1,
        )
    }

    pub fn apply_rect(&self, rect: &Rect) -> Rect {
        // Convert rect to 2 points, transform these 2 points, and construct a new rect with these
        // transformed points
        let top_left = (rect.left() as f32, rect.top() as f32);
        // This should be (left() + width()), or right() + 1
        let bottom_right = ((rect.right() + 1) as f32, (rect.bottom() + 1) as f32);

        let new_top_left = self.apply(top_left);
        let new_bottom_right = self.apply(bottom_right);

        // Subtract 1 from bottom_right because it should not be inside the rect, but just outside
        let rect = rect_from_points(
            [
                (new_top_left.0.round() as i32, new_top_left.1.round() as i32),
                (
                    new_bottom_right.0.round() as i32 - 1,
                    new_bottom_right.1.round() as i32 - 1,
                ),
            ]
            .iter()
            .copied(),
        );

        rect
    }
}

// Return the pixels connected horizontally and vertically, but not the pixels connected diagonally
// This are the 4-connected neighbors
fn four_connected_to(pos: (u32, u32)) -> [(u32, u32); 4] {
    [
        Direction::Left.go_from(pos),
        Direction::Right.go_from(pos),
        Direction::Up.go_from(pos),
        Direction::Down.go_from(pos),
    ]
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum Direction {
    Left,
    Right,
    Up,
    Down,
}

impl Direction {
    // I would prefer to be able to do point.advance(direction) which is more intuitive
    fn go_from(&self, (x, y): (u32, u32)) -> (u32, u32) {
        // Use wrapping arithmetic because the coordinates are positive and small, so when doing
        // bounds checking (-1) will be seen as (u32::MAX) which will be out of bounds
        match self {
            Direction::Left => (x.wrapping_sub(1), y),
            Direction::Right => (x.wrapping_add(1), y),
            Direction::Up => (x, y.wrapping_sub(1)),
            Direction::Down => (x, y.wrapping_add(1)),
        }
    }

    fn clockwise(&self) -> Self {
        match self {
            Direction::Left => Direction::Up,
            Direction::Right => Direction::Down,
            Direction::Up => Direction::Right,
            Direction::Down => Direction::Left,
        }
    }

    fn counter_clockwise(&self) -> Self {
        // Turning counter clockwise is the same as turning clockwise 3 times
        self.clockwise().clockwise().clockwise()
    }
}

// Expand the rect so it also includes the new point
fn expand_rect_to_point(rect: Rect, point: (i32, i32)) -> Rect {
    let mut min_x = rect.left();
    let mut min_y = rect.top();
    let mut max_x = rect.right();
    let mut max_y = rect.bottom();

    let (x, y) = point;

    if x < min_x {
        min_x = x;
    }
    if x > max_x {
        max_x = x;
    }
    if y < min_y {
        min_y = y;
    }
    if y > max_y {
        max_y = y;
    }

    Rect::at(min_x, min_y).of_size((max_x - min_x) as u32 + 1, (max_y - min_y) as u32 + 1)
}

// Rectiliniar polygon represented as a starting point (any corner that can be considered top-left,
// at least locally), and a list of movements (direction and count)
// The last movement must bring the cursor back to the starting point
// If steps is empty, this is a single point
// If steps has 2 elements, this is a single line
#[derive(Debug)]
struct RectPolygon {
    start: (u32, u32),
    steps: Vec<(Direction, u32)>,
}

impl RectPolygon {
    // Return the bounding box of the RectPolygon: the smallest rectangle that includes all the
    // points from the RectPolygon
    fn bounding_box(&self) -> Rect {
        rect_from_points(self.vertices().map(|(x, y)| (x as i32, y as i32)))
    }

    fn shape_descriptor(&self) -> Vec<Direction> {
        self.steps.iter().map(|(dir, _count)| *dir).collect()
    }

    // TODO: This is wrong, it calculates the area between the center of the vertices, so a 2x2
    // polygon will have area 1 instead of the expected 4
    // https://www.mathopenref.com/coordpolygonarea2.html
    fn area(&self) -> u64 {
        let mut a: i64 = 0;
        let vertices: Vec<_> = self.vertices().collect();
        let mut j = 0;

        for i in (0..vertices.len()).rev() {
            a += (i64::from(vertices[j].0) + i64::from(vertices[i].0) + 1)
                * (i64::from(vertices[j].1) - i64::from(vertices[i].1));
            j = i;
        }

        u64::try_from(a / 2).unwrap()
    }

    fn vertices<'a>(&'a self) -> impl Iterator<Item = (u32, u32)> + 'a {
        let mut pos = self.start;

        std::iter::once(self.start).chain(self.steps.iter().cloned().filter_map(
            move |(dir, count)| {
                if count == 0 {
                    return None;
                }
                for _ in 0..count {
                    pos = dir.go_from(pos);
                }

                Some(pos)
            },
        ))
    }
}

// Input: binary image
// The input image must be pased by value because it will be overwritten during the algorithm.
// If a polygon has a hole, it is skipped and will not exist in the output.
// Uses 4-connectivity because diagonal only neighbours should be impossible using the map border
// kernels.
fn extract_polygons_with_no_holes(mut img: GrayImage) -> Vec<RectPolygon> {
    let mut rps = vec![];
    let (w, h) = img.dimensions();
    // Starting at (0, 0), go to the right and then to the next line until we hit something
    for y in 0..h {
        for x in 0..w {
            let p = img.get_pixel(x, y)[0];
            if p == 0 {
                continue;
            }

            // We hit something! Because of the iteration order, this must be a top-left corner of
            // a new polygon
            //println!("Found new polygon at {:?}", (x, y));
            let rp = find_polygon_border(&img, (x, y));
            //println!("This is the polygon: {:?}\nWill delete borders now", rp);
            // Set all the pixels inside the polygon to background, to avoid detecting the same
            // polygon again. This will also check for holes, returing the number of pixels that
            // should be foreground but are not
            let num_hole_pixels = delete_polygon(&mut img, &rp);
            if num_hole_pixels > 0 {
                continue;
            }

            rps.push(rp);
        }
    }

    rps
}

// Set the color of all the pixels 4-connected to `(x, y)` to `color`.
// Returns the number of pixels that changed color.
fn bucket_tool(img: &mut GrayImage, (x, y): (u32, u32), color: u8) -> u64 {
    let (w, h) = img.dimensions();
    let mut stack = vec![(x, y)];
    let mut num_changed_pixels = 0;
    let old_color = img.get_pixel(x, y)[0];
    if color == old_color {
        return 0;
    }

    while let Some((x, y)) = stack.pop() {
        if x >= w || y >= h {
            continue;
        }

        let p = img.get_pixel(x, y)[0];
        if p != old_color {
            continue;
        }

        // Delete pixel
        img.put_pixel(x, y, Luma([color]));
        num_changed_pixels += 1;

        // Delete neighbour pixels as well
        for (nx, ny) in four_connected_to((x, y)).iter().cloned() {
            stack.push((nx, ny));
        }
    }

    num_changed_pixels
}

fn delete_connected_region(img: &mut GrayImage, (x, y): (u32, u32)) -> u64 {
    bucket_tool(img, (x, y), 0)
}

fn delete_polygon(img: &mut GrayImage, rp: &RectPolygon) -> u64 {
    let num_deleted_pixels = delete_connected_region(img, rp.start);

    // TODO: the area implementation is not correct, but it will always be smaller than the real
    // area, so if the hole size is big enough we can still detect it
    let expected_polygon_area = rp.area();
    let num_hole_pixels = expected_polygon_area.saturating_sub(num_deleted_pixels);

    num_hole_pixels
}

fn advance_steps(start: (u32, u32), dir: Direction, steps: u32) -> (u32, u32) {
    let mut pos = start;
    // The compiler can optimize this for loop into a single add
    for _ in 0..steps {
        pos = dir.go_from(pos);
    }

    pos
}

fn find_polygon_border(img: &GrayImage, start: (u32, u32)) -> RectPolygon {
    let mut steps = vec![];
    let mut pos = start;
    let mut s = (Direction::Right, 0);
    let first_step = follow_direction_while_foreground(&img, pos, s.0);
    s.1 = first_step;
    // Skip steps with length 0
    if s.1 != 0 {
        steps.push(s);
    }

    pos = advance_steps(pos, s.0, s.1);
    s = (s.0.clockwise(), 0);

    loop {
        //println!("pos {:?} dir {:?} steps: {:?}", pos, s.0, steps);
        //if steps.len() > 10 { panic!("debug"); }
        // Nothing more to the right, check down but as soon as we can, go to the right again
        let (step, new_dir) = follow_direction_until_can_turn_counter_clockwise(&img, pos, s.0);
        //println!("step {} new_dir {:?}", step, new_dir);
        s.1 = step;
        if s.1 != 0 {
            steps.push(s);
        }

        pos = advance_steps(pos, s.0, s.1);
        s = (new_dir, 0);

        // Check if we are back at the starting point
        if s.0 == Direction::Right && pos == start {
            return RectPolygon { start, steps };
        }
    }
}

// Returns number of steps and the next direction to follow. 0 means that the first pixel to the
// right of pos is a 0
fn follow_direction_until_can_turn_counter_clockwise(
    img: &GrayImage,
    mut pos: (u32, u32),
    direction: Direction,
) -> (u32, Direction) {
    let turn_direction = direction.counter_clockwise();
    let mut steps = 0;

    loop {
        if steps > 0 {
            let new_pos_2 = turn_direction.go_from(pos);
            let new_pixel =
                if new_pos_2.0 >= img.dimensions().0 || new_pos_2.1 >= img.dimensions().1 {
                    0
                } else {
                    img.get_pixel(new_pos_2.0, new_pos_2.1)[0]
                };
            if new_pixel == 255 {
                return (steps, turn_direction);
            }
        }

        let new_pos = direction.go_from(pos);
        let new_pixel = if new_pos.0 >= img.dimensions().0 || new_pos.1 >= img.dimensions().1 {
            0
        } else {
            img.get_pixel(new_pos.0, new_pos.1)[0]
        };
        if new_pixel == 0 {
            return (steps, direction.clockwise());
        }

        pos = new_pos;
        steps += 1;
    }
}

// Returns number of steps. 0 means that the first pixel to the right of pos is a 0
fn follow_direction_while_foreground(
    img: &GrayImage,
    mut pos: (u32, u32),
    direction: Direction,
) -> u32 {
    let mut steps = 0;

    loop {
        let new_pos = direction.go_from(pos);
        let new_pixel = if new_pos.0 >= img.dimensions().0 || new_pos.1 >= img.dimensions().1 {
            0
        } else {
            img.get_pixel(new_pos.0, new_pos.1)[0]
        };
        if new_pixel == 0 {
            return steps;
        }
        pos = new_pos;
        steps += 1;
    }
}

/// Split one Rgba<u8> image into 3 Luma<u8> images, one per channel: red, green and blue
fn split_image_into_channels<I>(img: &I) -> (GrayImage, GrayImage, GrayImage)
where
    I: GenericImageView<Pixel = Rgba<u8>>,
{
    let (w, h) = img.dimensions();
    let mut red_image = DynamicImage::new_luma8(w, h).to_luma();
    let mut green_image = DynamicImage::new_luma8(w, h).to_luma();
    let mut blue_image = DynamicImage::new_luma8(w, h).to_luma();

    for (x, y, pixel) in img.pixels() {
        let red = Luma([pixel[0]]);
        let green = Luma([pixel[1]]);
        let blue = Luma([pixel[2]]);
        red_image.put_pixel(x, y, red);
        green_image.put_pixel(x, y, green);
        blue_image.put_pixel(x, y, blue);
    }

    (red_image, green_image, blue_image)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn scale_translate() {
        let img_rect = Rect::at(50, 50).of_size(100, 100);
        let template_rect = Rect::at(1, 1).of_size(10, 10);
        let template_to_image = ScaleTranslate::from_rect_to_rect(&template_rect, &img_rect);
        let image_to_template = ScaleTranslate::from_rect_to_rect(&img_rect, &template_rect);

        assert_eq!(template_to_image.apply((1.0, 1.0)), (50.0, 50.0));
        assert_eq!(template_to_image.apply((11.0, 11.0)), (150.0, 150.0));
        assert_eq!(template_to_image.apply((5.0, 7.0)), (90.0, 110.0));

        assert_eq!(image_to_template.apply((50.0, 50.0)), (1.0, 1.0));
        assert_eq!(image_to_template.apply((150.0, 150.0)), (11.0, 11.0));
        assert_eq!(image_to_template.apply((90.0, 110.0)), (5.0, 7.0));

        assert_eq!(template_to_image.apply_rect(&template_rect), img_rect);
    }

    #[test]
    fn linear_regression_rounded_y() {
        let mut errors = 0;
        //for m in 0..100000 {
        //let m = 1.0 + m as f32 / 1e4;
        let m = 1.055;
        let n = 0.0;
        let x: Vec<i32> = (1..=10).collect();
        let y_exact: Vec<f32> = x.iter().copied().map(|x| m * x as f32 + n).collect();
        let y_round: Vec<i32> = y_exact.iter().map(|y| y.round() as i32).collect();
        //let y_round: Vec<i32> = y_exact.iter().map(|y| y.floor() as i32).collect();
        let (guess_m, guess_n) = linear_regression(&x, &y_round);
        let y_guess: Vec<f32> = x
            .iter()
            .copied()
            .map(|x| guess_m * x as f32 + guess_n)
            .collect();
        let y_guess_round: Vec<i32> = y_guess.iter().copied().map(|y| y.round() as i32).collect();
        let y_err: Vec<i32> = y_guess_round
            .iter()
            .copied()
            .zip(y_round.iter().copied())
            .map(|(guess, exact)| exact - guess)
            .collect();

        let good = y_err.iter().all(|y| *y == 0);

        errors += if good { 0 } else { 1 };

        assert_eq!(errors, 0);
    }

    #[test]
    fn gradient_descent_explosion() {
        // This test fails when the learning rate is set to 1e-4
        let x = vec![
            296, 220, 252, 248, 192, 380, 268, 148, 172, 140, 212, 292, 336, 372, 304, 132, 216,
            264, 356,
        ];
        let y = vec![
            638, 370, 483, 469, 271, 935, 539, 116, 201, 88, 342, 624, 779, 906, 666, 60, 356, 525,
            850,
        ];
        let (slope, intercept) = (3.526963, -405.86432);

        let learning_rate = 1e-6;
        let num_iterations = 1_000;
        let (slope, intercept) =
            gradient_descent(&x, &y, slope, intercept, learning_rate, num_iterations);

        let y_pred: Vec<f32> = x
            .iter()
            .copied()
            .map(|x| (x as f32) * slope + intercept)
            .collect();
        let y_err: Vec<i32> = y
            .iter()
            .zip(y_pred.iter())
            .map(|(y, y_pred)| (y_pred.round() as i32 - (*y)))
            .collect();

        assert_eq!(y_err, vec![0; y_err.len()]);
    }

    #[test]
    // TODO: is this case even solvable?
    // As a workaround, try to add 0.5 when converting pixel coordinates to floats: the pixel at
    // (0, 0) is actually the pixel at (0.5, 0.5) because if you scale it x2 it will be (1, 1)
    // which is the line in between pixels 0.5 and 1.5.
    #[ignore]
    fn gradient_descent_bad_case_1() {
        let x = vec![
            272, 240, 380, 372, 204, 244, 296, 180, 132, 292, 348, 140, 264, 216, 212,
        ];
        let y = vec![
            1016, 904, 1397, 1369, 777, 918, 1101, 692, 523, 1087, 1285, 551, 988, 819, 805,
        ];
        let (slope, intercept) = (3.525488, 57.55664);

        let learning_rate = 1e-6;
        let num_iterations = 1_000;
        gradient_descent(&x, &y, slope, intercept, learning_rate, num_iterations);

        let y_pred: Vec<f32> = x
            .iter()
            .copied()
            .map(|x| (x as f32) * slope + intercept)
            .collect();
        let y_err: Vec<i32> = y
            .iter()
            .zip(y_pred.iter())
            .map(|(y, y_pred)| (y_pred.round() as i32 - (*y)))
            .collect();

        assert_eq!(y_err, vec![0; y_err.len()]);
    }
}