1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//! Milenage authentication algorithm
//! as proposed by ETSI SAGE for 3G authentication.
//!
//! See 3GPP TS [35.205 (General)](https://www.3gpp.org/ftp/Specs/archive/35_series/35.205/),
//! [3GPP TS 35.206 (Algorithm specification)](https://www.3gpp.org/ftp/Specs/archive/35_series/35.206/)
//! and [3GPP TS 35.208 (Design conformance test data)](https://www.3gpp.org/ftp/Specs/archive/35_series/35.208/).
//!
//!
//! # Usage example
//! ```
//!#[macro_use]
//!extern crate hex_literal;
//!extern crate milenage;
//!use milenage::Milenage;
//!
//!fn main() {
//!        // Use Test set 2 from 3GPP 35.208
//!        let k = hex!("465b5ce8b199b49faa5f0a2ee238a6bc");
//!        let op = hex!("cdc202d5123e20f62b6d676ac72cb318");
//!        let rand = hex!("23553cbe9637a89d218ae64dae47bf35");
//!
//!        let mut m = Milenage::new_with_op(k, op);
//!        let (res, ck, ik, ak) = m.f2345(&rand);
//!        
//!        assert_eq!(m.res.unwrap(), hex!("a54211d5e3ba50bf"));
//!        // or
//!        assert_eq!(res, hex!("a54211d5e3ba50bf"));
//!        assert_eq!(ck, hex!("b40ba9a3c58b2a05bbf0d987b21bf8cb"));
//!        assert_eq!(ik, hex!("f769bcd751044604127672711c6d3441"));
//!        assert_eq!(ak, hex!("aa689c648370"));
//!}
//!
//! ```

extern crate aes_soft as aes;
extern crate block_modes;
#[cfg_attr(test, macro_use)]
extern crate hex_literal;

use aes::block_cipher_trait::generic_array::GenericArray;
use aes::block_cipher_trait::BlockCipher;
use aes::Aes128;

/// xor two 16 bytes array
fn xor(a1: &[u8; 16], a2: &[u8; 16]) -> [u8; 16] {
    let mut output = [0u8; 16];
    for i in 0..16 {
        output[i] = a1[i] ^ a2[i];
    }
    output
}

#[derive(Debug, Default)]
/// Milenage instance
pub struct Milenage {
    /// AK is a 48-bit anonymity key that is the output of either of the functions f5.
    pub ak: Option<[u8; 6]>,
    /// CK is a 128-bit confidentiality key that is the output of the function f3.
    pub ck: Option<[u8; 16]>,
    /// IK is a 128-bit integrity key that is the output of the function f4.
    pub ik: Option<[u8; 16]>,
    /// K is a 128-bit subscriber key that is an input to the functions f1, f1*, f2, f3, f4, f5 and f5*.
    pub k: [u8; 16],
    /// MACA is a 64-bit network authentication code that is the output of the function f1.
    pub maca: Option<[u8; 8]>,
    /// MACS is a 64-bit resynchronisation authentication code that is the output of the function f1*.
    pub macs: Option<[u8; 8]>,
    /// OP is a 128-bit Operator Variant Algorithm Configuration Field that is a component of the
    /// functions f1, f1*, f2, f3, f4, f5 and f5*.
    pub op: Option<[u8; 16]>,
    /// OPc is a 128-bit value derived from OP and K and used within the computation of the functions.
    pub opc: [u8; 16],
    /// RES is a 64-bit signed response that is the output of the function f2.
    pub res: Option<[u8; 8]>,
}

impl Milenage {
    ///  Returns a new initialized Milenage from K and OP
    pub fn new_with_op(k: [u8; 16], op: [u8; 16]) -> Milenage {
        let mut m = Milenage {
            k: k,
            op: Some(op),
            ..Default::default()
        };
        m.compute_opc();
        m
    }

    ///  Returns a new initialized Milenage from K and OPc
    pub fn new_with_opc(k: [u8; 16], opc: [u8; 16]) -> Milenage {
        Milenage {
            k: k,
            opc: opc,
            ..Default::default()
        }
    }

    /// F1 is the network authentication function.
    /// F1 computes network authentication code MAC-A from key K, random challenge RAND,
    /// sequence number SQN and authentication management field AMF.
    pub fn f1(&mut self, rand: &[u8; 16], sqn: &[u8; 6], amf: &[u8; 2]) -> [u8; 8] {
        let mac = self.f1base(rand, sqn, amf);
        let mut maca = [0u8; 8];
        maca.copy_from_slice(&mac[..8]);

        self.maca = Some(maca);
        maca
    }

    /// F1Star is the re-synchronisation message authentication function.
    /// F1Star computes resynch authentication code MAC-S from key K, random challenge RAND,
    /// sequence number SQN and authentication management field AMF.
    pub fn f1star(&mut self, rand: &[u8; 16], sqn: &[u8; 6], amf: &[u8; 2]) -> [u8; 8] {
        let mac = self.f1base(rand, sqn, amf);
        let mut macs = [0u8; 8];
        macs.copy_from_slice(&mac[8..]);

        self.macs = Some(macs);
        macs
    }

    /// Used by f1 and f1star
    fn f1base(&self, rand: &[u8; 16], sqn: &[u8; 6], amf: &[u8; 2]) -> [u8; 16] {
        let rijndael_input: [u8; 16] = xor(&self.opc, rand);
        let temp = self.rijndael_encrypt(&rijndael_input);

        let mut in1 = [0u8; 16];
        in1[..6].copy_from_slice(sqn);
        in1[6..8].copy_from_slice(amf);
        in1[8..14].copy_from_slice(sqn);
        in1[14..16].copy_from_slice(amf);

        let mut rijndael_input = [0u8; 16];

        /* XOR op_c and in1, rotate by r1=64, and XOR *
         * on the constant c1 (which is all zeroes)   */

        for i in 0..16 {
            rijndael_input[(i + 8) % 16] = in1[i] ^ self.opc[i];
        }

        /* XOR on the value temp computed before */
        for (i, elem) in rijndael_input.iter_mut().enumerate() {
            *elem ^= temp[i];
        }

        let mut out1 = self.rijndael_encrypt(&rijndael_input);

        for (i, elem) in out1.iter_mut().enumerate() {
            *elem ^= &self.opc[i];
        }

        out1
    }

    /// F2345 takes key K and random challenge RAND, and returns response RES,
    /// confidentiality key CK, integrity key IK and anonymity key AK.
    pub fn f2345(&mut self, rand: &[u8; 16]) -> ([u8; 8], [u8; 16], [u8; 16], [u8; 6]) {
        let rijndael_input = xor(&self.opc, rand);
        let temp = self.rijndael_encrypt(&rijndael_input);

        // To obtain output block OUT2: XOR OPc and TEMP, rotate by r2=0, and XOR on the
        // constant c2 (which is all zeroes except that the last bit is 1).

        let mut rijndael_input = xor(&temp, &self.opc);
        rijndael_input[15] ^= 1;

        let out = self.rijndael_encrypt(&rijndael_input);
        let tmp = xor(&out, &self.opc);

        let mut res = [0u8; 8];
        let mut ak = [0u8; 6];

        res.copy_from_slice(&tmp[8..]);
        ak.copy_from_slice(&tmp[..6]);

        // To obtain output block OUT3: XOR OPc and TEMP, rotate by r3=32, and XOR on the
        // constant c3 (which is all zeroes except that the next to last bit is 1).

        let mut rijndael_input = [0u8; 16];
        for i in 0..16 {
            rijndael_input[(i + 12) % 16] = temp[i] ^ self.opc[i]
        }
        rijndael_input[15] ^= 2;

        let out = self.rijndael_encrypt(&rijndael_input);
        let ck = xor(&out, &self.opc);

        // To obtain output block OUT4: XOR OPc and TEMP, rotate by r4=64, and XOR on the
        // constant c4 (which is all zeroes except that the 2nd from last bit is 1).

        let mut rijndael_input = [0u8; 16];
        for i in 0..16 {
            rijndael_input[(i + 8) % 16] = temp[i] ^ self.opc[i]
        }
        rijndael_input[15] ^= 4;

        let out = self.rijndael_encrypt(&rijndael_input);
        let ik = xor(&out, &self.opc);

        self.res = Some(res);
        self.ck = Some(ck);
        self.ik = Some(ik);
        self.ak = Some(ak);
        (res, ck, ik, ak)
    }

    /// F5Star is the anonymity key derivation function for the re-synchronisation message.
    /// F5Star takes key K and random challenge RAND, and returns resynch anonymity key AK.
    pub fn f5star(&mut self, rand: &[u8; 16]) -> [u8; 6] {
        let mut rijndael_input = xor(&self.opc, rand);
        let temp = self.rijndael_encrypt(&rijndael_input);

        // To obtain output block OUT5: XOR OPc and TEMP, rotate by r5=96, and XOR on the
        // constant c5 (which is all zeroes except that the 3rd from last bit is 1).
        for i in 0..16 {
            rijndael_input[(i + 4) % 16] = temp[i] ^ self.opc[i];
        }
        rijndael_input[15] ^= 8;

        let mut out = self.rijndael_encrypt(&rijndael_input);
        for (i, elem) in out.iter_mut().enumerate() {
            *elem ^= &self.opc[i];
        }

        let mut ak = [0u8; 6];
        ak.copy_from_slice(&out[..6]);

        self.ak = Some(ak);
        ak
    }

    /// Derive OP with K to produce OPc
    fn compute_opc(&mut self) {
        let op = match self.op {
            Some(v) => v,
            None => panic!("No OP value provided"),
        };
        let ciphered_opc = self.rijndael_encrypt(&op);
        self.opc = xor(&ciphered_opc, &op);
    }

    fn rijndael_encrypt(&self, input: &[u8; 16]) -> [u8; 16] {
        let key = GenericArray::from_slice(&self.k);
        let cipher = Aes128::new(key);
        let mut block = GenericArray::clone_from_slice(input);
        cipher.encrypt_block(&mut block);
        let mut output = [0u8; 16];
        output.copy_from_slice(&block);
        output
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    // Use Test set 2 from 3GPP 35.208

    #[test]
    fn test_f1star() {
        let k = hex!("465b5ce8b199b49faa5f0a2ee238a6bc");
        let op = hex!("cdc202d5123e20f62b6d676ac72cb318");
        let rand = hex!("23553cbe9637a89d218ae64dae47bf35");
        let sqn = hex!("ff9bb4d0b607");
        let amf = hex!("b9b9");
        let mut m = Milenage::new_with_op(k, op);
        let maca = m.f1star(&rand, &sqn, &amf);
        assert_eq!(maca, hex!("01cfaf9ec4e871e9"));
    }

    #[test]
    fn test_f1() {
        let k = hex!("465b5ce8b199b49faa5f0a2ee238a6bc");
        let op = hex!("cdc202d5123e20f62b6d676ac72cb318");
        let rand = hex!("23553cbe9637a89d218ae64dae47bf35");
        let sqn = hex!("ff9bb4d0b607");
        let amf = hex!("b9b9");
        let mut m = Milenage::new_with_op(k, op);
        let maca = m.f1(&rand, &sqn, &amf);
        assert_eq!(maca, hex!("4a9ffac354dfafb3"));
    }

    #[test]
    fn test_f2345() {
        let k = hex!("465b5ce8b199b49faa5f0a2ee238a6bc");
        let op = hex!("cdc202d5123e20f62b6d676ac72cb318");
        let rand = hex!("23553cbe9637a89d218ae64dae47bf35");
        let mut m = Milenage::new_with_op(k, op);
        let (res, ck, ik, ak) = m.f2345(&rand);
        println!("{:?}", (res, ck, ik, ak));
        assert_eq!(res, hex!("a54211d5e3ba50bf"));
        assert_eq!(ck, hex!("b40ba9a3c58b2a05bbf0d987b21bf8cb"));
        assert_eq!(ik, hex!("f769bcd751044604127672711c6d3441"));
        assert_eq!(ak, hex!("aa689c648370"));
    }

    #[test]
    fn test_f5star() {
        let k = hex!("465b5ce8b199b49faa5f0a2ee238a6bc");
        let op = hex!("cdc202d5123e20f62b6d676ac72cb318");
        let rand = hex!("23553cbe9637a89d218ae64dae47bf35");
        let mut m = Milenage::new_with_op(k, op);
        let ak = m.f5star(&rand);
        assert_eq!(ak, hex!("451e8beca43b"));
    }

    #[test]
    fn test_compute_opc() {
        let k = hex!("465b5ce8b199b49faa5f0a2ee238a6bc");
        let op = hex!("cdc202d5123e20f62b6d676ac72cb318");
        let m = Milenage::new_with_op(k, op);
        assert_eq!(m.opc, hex!("cd63cb71954a9f4e48a5994e37a02baf"));
    }
}