1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
use core::{
fmt,
ops::{Index, IndexMut},
};
use crate::{Felt, FieldElement, Type};
/// This trait is used to represent the basic plumbing of the operand stack in
/// Miden Assembly.
///
/// Implementations of this trait may attach different semantics to the meaning of
/// elements on the stack. As a result, certain operations which are contingent on the
/// specific value of an element, may behave differently depending on the specific
/// implementation.
///
/// In general however, it is expected that use of this trait in a generic context will
/// be rare, if ever the case. As mentioned above, it is meant to handle the common
/// plumbing of an operand stack implementation, but in practice users will be working
/// with a concrete implementation with this trait in scope to provide access to the
/// basic functionality of the stack.
///
/// It is expected that implementations will override functions in this trait as necessary
/// to implement custom behavior above and beyond what is provided by the default implementation.
pub trait Stack: IndexMut<usize, Output = <Self as Stack>::Element> {
type Element: StackElement;
/// Return a reference to the underlying "raw" stack data structure, a vector
fn stack(&self) -> &Vec<Self::Element>;
/// Return a mutable reference to the underlying "raw" stack data structure, a vector
fn stack_mut(&mut self) -> &mut Vec<Self::Element>;
/// Clear the contents of this stack while keeping the underlying
/// memory allocated for reuse.
fn clear(&mut self);
/// Display this stack using its debugging representation
fn debug(&self) -> DebugStack<Self> {
DebugStack::new(self)
}
/// Returns true if the operand stack is empty
#[inline(always)]
fn is_empty(&self) -> bool {
self.stack().is_empty()
}
/// Returns the number of elements on the stack
#[inline]
fn len(&self) -> usize {
self.stack().len()
}
/// Returns the value on top of the stack, without consuming it
#[inline]
fn peek(&self) -> Option<Self::Element> {
self.stack().last().cloned()
}
/// Returns the word on top of the stack, without consuming it
///
/// The top of the stack will be the first element of the word
#[inline]
fn peekw(&self) -> Option<[Self::Element; 4]> {
let stack = self.stack();
let end = stack.len().checked_sub(1)?;
Some([
stack[end].clone(),
stack[end - 1].clone(),
stack[end - 2].clone(),
stack[end - 3].clone(),
])
}
/// Pushes a word of zeroes on top of the stack
fn padw(&mut self) {
self.stack_mut().extend([
Self::Element::DEFAULT,
Self::Element::DEFAULT,
Self::Element::DEFAULT,
Self::Element::DEFAULT,
]);
}
/// Pushes `value` on top of the stac
fn push(&mut self, value: Self::Element) {
self.stack_mut().push(value);
}
/// Pushes `word` on top of the stack
///
/// The first element of `word` will be on top of the stack
fn pushw(&mut self, mut word: [Self::Element; 4]) {
word.reverse();
self.stack_mut().extend(word);
}
/// Pops the value on top of the stack
fn pop(&mut self) -> Option<Self::Element> {
self.stack_mut().pop()
}
/// Pops the first word on top of the stack
///
/// The top of the stack will be the first element in the result
fn popw(&mut self) -> Option<[Self::Element; 4]> {
let stack = self.stack_mut();
let a = stack.pop()?;
let b = stack.pop()?;
let c = stack.pop()?;
let d = stack.pop()?;
Some([a, b, c, d])
}
/// Drops the top item on the stack
fn drop(&mut self) {
self.dropn(1);
}
/// Drops the top word on the stack
fn dropw(&mut self) {
self.dropn(4);
}
#[inline]
fn dropn(&mut self, n: usize) {
let stack = self.stack_mut();
let len = stack.len();
assert!(n <= len, "unable to drop {} elements, operand stack only has {}", n, len);
stack.truncate(len - n);
}
/// Duplicates the value in the `n`th position on the stack
///
/// If `n` is 0, duplicates the top of the stack.
fn dup(&mut self, n: usize) {
let value = self[n].clone();
self.stack_mut().push(value);
}
/// Duplicates the `n`th word on the stack, to the top of the stack.
///
/// Valid values for `n` are 0, 1, 2, or 3.
///
/// If `n` is 0, duplicates the top word of the stack.
fn dupw(&mut self, n: usize) {
assert!(n < 4, "invalid word index: must be in the range 0..=3");
let len = self.stack().len();
let index = n * 4;
assert!(
index < len,
"invalid operand stack index ({}), only {} elements are available",
index,
len
);
match index {
0 => {
let word = self.peekw().expect("operand stack is empty");
self.pushw(word);
}
n => {
let end = len - n - 1;
let word = {
let stack = self.stack();
[
stack[end].clone(),
stack[end - 1].clone(),
stack[end - 2].clone(),
stack[end - 3].clone(),
]
};
self.pushw(word);
}
}
}
/// Swaps the `n`th value from the top of the stack, with the top of the stack
///
/// If `n` is 1, it swaps the first two elements on the stack.
///
/// NOTE: This function will panic if `n` is 0, or out of bounds.
fn swap(&mut self, n: usize) {
assert_ne!(n, 0, "invalid swap, index must be in the range 1..=15");
let stack = self.stack_mut();
let len = stack.len();
assert!(
n < len,
"invalid operand stack index ({}), only {} elements are available",
n,
len
);
let a = len - 1;
let b = a - n;
stack.swap(a, b);
}
/// Swaps the `n`th word from the top of the stack, with the word on top of the stack
///
/// If `n` is 1, it swaps the first two words on the stack.
///
/// Valid values for `n` are: 1, 2, 3.
fn swapw(&mut self, n: usize) {
assert_ne!(n, 0, "invalid swap, index must be in the range 1..=3");
let stack = self.stack_mut();
let len = stack.len();
let index = n * 4;
assert!(
index < len,
"invalid operand stack index ({}), only {} elements are available",
index,
len
);
let end = len - 1;
for offset in 0..4 {
// The index of the element in the top word
let a = end - offset;
// The index of the element in the `n`th word
let b = end - offset - index;
stack.swap(a, b);
}
}
/// Swaps the top two and bottom two words on the stack.
fn swapdw(&mut self) {
let stack = self.stack_mut();
stack.rotate_left(8);
}
/// Moves the `n`th value to the top of the stack
///
/// If `n` is 1, this is equivalent to `swap(1)`.
///
/// NOTE: This function will panic if `n` is 0, or out of bounds.
fn movup(&mut self, n: usize) {
assert_ne!(n, 0, "invalid move, index must be in the range 1..=15");
let stack = self.stack_mut();
let len = stack.len();
assert!(
n < len,
"invalid operand stack index ({}), only {} elements are available",
n,
len
);
// Pick the midpoint by counting backwards from the end
let mid = len - (n + 1);
// Split the stack, and rotate the half that
// contains our desired value to place it on top.
let (_, r) = stack.split_at_mut(mid);
r.rotate_left(1);
}
/// Moves the `n`th word to the top of the stack
///
/// If `n` is 1, this is equivalent to `swapw(1)`.
///
/// Valid values for `n` are: 1, 2, 3
fn movupw(&mut self, n: usize) {
assert_ne!(n, 0, "invalid move, index must be in the range 1..=3");
let stack = self.stack_mut();
let len = stack.len();
let index = (n * 4) + 4;
assert!(
index < len,
"invalid operand stack index ({}), only {} elements are available",
index,
len
);
// Pick the midpoint index by counting backwards from the end
let mid = len - index;
// Split the stack, and rotate the half that
// contains our desired word to place it on top.
let (_, r) = stack.split_at_mut(mid);
r.rotate_left(4);
}
/// Makes the value on top of the stack, the `n`th value on the stack
///
/// If `n` is 1, this is equivalent to `swap(1)`.
///
/// NOTE: This function will panic if `n` is 0, or out of bounds.
fn movdn(&mut self, n: usize) {
assert_ne!(n, 0, "invalid move: index must be in the range 1..=15");
let stack = self.stack_mut();
let len = stack.len();
assert!(
n < len,
"invalid operand stack index ({}), only {} elements are available",
n,
len
);
// Split the stack so that the desired position is in the top half
let mid = len - (n + 1);
let (_, r) = stack.split_at_mut(mid);
// Move all elements above the `n`th position up by one, moving the top element to the `n`th
// position
r.rotate_right(1);
}
/// Makes the word on top of the stack, the `n`th word on the stack
///
/// If `n` is 1, this is equivalent to `swapw(1)`.
///
/// Valid values for `n` are: 1, 2, 3
fn movdnw(&mut self, n: usize) {
assert_ne!(n, 0, "invalid move, index must be in the range 1..=3");
let stack = self.stack_mut();
let len = stack.len();
let index = (n * 4) + 4;
assert!(
index < len,
"invalid operand stack index ({}), only {} elements are available",
index,
len
);
// Split the stack so that the desired position is in the top half
let mid = len - index;
let (_, r) = stack.split_at_mut(mid);
// Move all elements above the `n`th word up by one word, moving the top word to the `n`th
// position
r.rotate_right(4);
}
}
/// This trait is used to represent expected behavior/properties of elements
/// that can be used in conjunction with the [Stack] trait.
pub trait StackElement: Clone {
type Debug: fmt::Debug;
/// A value of this type which represents the "zero" value for the type
const DEFAULT: Self;
/// Format this stack element for display
fn debug(&self) -> Self::Debug;
}
impl StackElement for Felt {
type Debug = u64;
const DEFAULT: Self = Felt::ZERO;
#[inline]
fn debug(&self) -> Self::Debug {
self.as_int()
}
}
impl StackElement for Type {
type Debug = Type;
const DEFAULT: Self = Type::Felt;
#[inline]
fn debug(&self) -> Self::Debug {
self.clone()
}
}
/// This structure is a concrete implementation of the [Stack] trait, implemented
/// for use with two different element types:
///
/// * [Felt], for actual emulation of the Miden VM operand stack
/// * [Type], for tracking the state of the operand stack in abstract
pub struct OperandStack<T> {
stack: Vec<T>,
}
impl<T: Clone> Clone for OperandStack<T> {
fn clone(&self) -> Self {
Self {
stack: self.stack.clone(),
}
}
}
impl<T> Default for OperandStack<T> {
fn default() -> Self {
Self { stack: vec![] }
}
}
impl<T: StackElement> Stack for OperandStack<T> {
type Element = T;
#[inline(always)]
fn stack(&self) -> &Vec<Self::Element> {
&self.stack
}
#[inline(always)]
fn stack_mut(&mut self) -> &mut Vec<Self::Element> {
&mut self.stack
}
#[inline(always)]
fn clear(&mut self) {
self.stack.clear();
}
}
impl OperandStack<Felt> {
/// Pushes `value` on top of the stack, with an optional set of aliases
pub fn push_u8(&mut self, value: u8) {
self.stack.push(Felt::new(value as u64));
}
/// Pushes `value` on top of the stack, with an optional set of aliases
pub fn push_u16(&mut self, value: u16) {
self.stack.push(Felt::new(value as u64));
}
/// Pushes `value` on top of the stack, with an optional set of aliases
pub fn push_u32(&mut self, value: u32) {
self.stack.push(Felt::new(value as u64));
}
}
impl<T: StackElement> Index<usize> for OperandStack<T> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
let len = self.stack.len();
assert!(
index < 16,
"invalid operand stack index ({}), only the top 16 elements are directly accessible",
index
);
assert!(
index < len,
"invalid operand stack index ({}), only {} elements are available",
index,
len
);
&self.stack[len - index - 1]
}
}
impl<T: StackElement> IndexMut<usize> for OperandStack<T> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
let len = self.stack.len();
assert!(
index < 16,
"invalid operand stack index ({}), only the top 16 elements are directly accessible",
index
);
assert!(
index < len,
"invalid operand stack index ({}), only {} elements are available",
index,
len
);
&mut self.stack[len - index - 1]
}
}
#[doc(hidden)]
pub struct DebugStack<'a, T: ?Sized + Stack> {
stack: &'a T,
limit: Option<usize>,
}
impl<'a, E: StackElement, T: ?Sized + Stack<Element = E>> DebugStack<'a, T> {
pub fn new(stack: &'a T) -> Self {
Self { stack, limit: None }
}
pub fn take(mut self, n: usize) -> Self {
self.limit = Some(n);
self
}
}
impl<'a, E: StackElement, T: ?Sized + Stack<Element = E>> fmt::Debug for DebugStack<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
#[allow(unused)]
struct StackEntry<'a, E: StackElement> {
index: usize,
value: &'a E,
}
impl<'a, E: StackElement> fmt::Debug for StackEntry<'a, E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("StackEntry")
.field("index", &self.index)
.field("value", &self.value.debug())
.finish()
}
}
f.debug_list()
.entries(
self.stack
.stack()
.iter()
.rev()
.enumerate()
.take(self.limit.unwrap_or(self.stack.len()))
.map(|(index, value)| StackEntry { index, value }),
)
.finish()
}
}
impl<'a, E: StackElement + fmt::Debug, T: ?Sized + Stack<Element = E>> fmt::Display
for DebugStack<'a, T>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(
self.stack
.stack()
.iter()
.rev()
.enumerate()
.take(self.limit.unwrap_or(self.stack.len())),
)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn operand_stack_primitive_ops_test() {
let mut stack = OperandStack::<Felt>::default();
let zero = Felt::new(0);
let one = Felt::new(1);
let two = Felt::new(2);
let three = Felt::new(3);
let four = Felt::new(4);
let five = Felt::new(5);
let six = Felt::new(6);
let seven = Felt::new(7);
// push
stack.push(zero);
stack.push(one);
stack.push(two);
stack.push(three);
assert_eq!(stack.len(), 4);
assert_eq!(stack[0].as_int(), 3);
assert_eq!(stack[1].as_int(), 2);
assert_eq!(stack[2].as_int(), 1);
assert_eq!(stack[3].as_int(), 0);
#[inline(always)]
fn as_int(word: [Felt; 4]) -> [u64; 4] {
[word[0].as_int(), word[1].as_int(), word[2].as_int(), word[3].as_int()]
}
// peekw
assert_eq!(stack.peekw().map(as_int), Some([3, 2, 1, 0]));
// dupw
stack.dupw(0);
assert_eq!(stack.len(), 8);
assert_eq!(stack.peekw().map(as_int), Some([3, 2, 1, 0]));
// padw
stack.padw();
assert_eq!(stack.len(), 12);
assert_eq!(stack.peekw().map(as_int), Some([0; 4]));
// swapw
stack.swapw(1);
assert_eq!(stack.len(), 12);
assert_eq!(stack.peekw().map(as_int), Some([3, 2, 1, 0]));
// popw
let word = stack.popw();
assert_eq!(stack.len(), 8);
assert_eq!(word.map(as_int), Some([3, 2, 1, 0]));
// pushw
stack.pushw(word.unwrap());
stack.pushw([seven, six, five, four]);
assert_eq!(stack.len(), 16);
assert_eq!(stack.peekw().map(as_int), Some([7, 6, 5, 4]));
// movupw
stack.movupw(2);
assert_eq!(stack.len(), 16);
assert_eq!(stack.peekw().map(as_int), Some([0; 4]));
assert_eq!(stack[8].as_int(), 3);
assert_eq!(stack[9].as_int(), 2);
assert_eq!(stack[10].as_int(), 1);
assert_eq!(stack[11].as_int(), 0);
// movdnw
stack.movdnw(2);
assert_eq!(stack.len(), 16);
assert_eq!(stack.peekw().map(as_int), Some([7, 6, 5, 4]));
assert_eq!(stack[8].as_int(), 0);
assert_eq!(stack[9].as_int(), 0);
assert_eq!(stack[10].as_int(), 0);
assert_eq!(stack[11].as_int(), 0);
// dropw
stack.movupw(2);
stack.dropw();
assert_eq!(stack.len(), 12);
assert_eq!(stack.peekw().map(as_int), Some([7, 6, 5, 4]));
// dup(n)
stack.dup(0);
assert_eq!(stack.len(), 13);
assert_eq!(stack[0].as_int(), 7);
assert_eq!(stack[1].as_int(), 7);
assert_eq!(stack[2].as_int(), 6);
assert_eq!(stack[3].as_int(), 5);
assert_eq!(stack[4].as_int(), 4);
stack.dup(3);
assert_eq!(stack.len(), 14);
assert_eq!(stack[0].as_int(), 5);
assert_eq!(stack[1].as_int(), 7);
assert_eq!(stack[2].as_int(), 7);
assert_eq!(stack[3].as_int(), 6);
assert_eq!(stack[4].as_int(), 5);
assert_eq!(stack[5].as_int(), 4);
// swap(n)
stack.swap(1);
assert_eq!(stack.len(), 14);
assert_eq!(stack[0].as_int(), 7);
assert_eq!(stack[1].as_int(), 5);
assert_eq!(stack[2].as_int(), 7);
assert_eq!(stack[3].as_int(), 6);
assert_eq!(stack[4].as_int(), 5);
assert_eq!(stack[5].as_int(), 4);
// movup(n)
stack.movup(3);
assert_eq!(stack.len(), 14);
assert_eq!(stack[0].as_int(), 6);
assert_eq!(stack[1].as_int(), 7);
assert_eq!(stack[2].as_int(), 5);
assert_eq!(stack[3].as_int(), 7);
assert_eq!(stack[4].as_int(), 5);
assert_eq!(stack[5].as_int(), 4);
// movdn(n)
stack.movdn(3);
assert_eq!(stack.len(), 14);
assert_eq!(stack[0].as_int(), 7);
assert_eq!(stack[1].as_int(), 5);
assert_eq!(stack[2].as_int(), 7);
assert_eq!(stack[3].as_int(), 6);
assert_eq!(stack[4].as_int(), 5);
assert_eq!(stack[5].as_int(), 4);
// drop
stack.drop();
assert_eq!(stack.len(), 13);
assert_eq!(stack[0].as_int(), 5);
assert_eq!(stack[1].as_int(), 7);
assert_eq!(stack[2].as_int(), 6);
assert_eq!(stack[3].as_int(), 5);
assert_eq!(stack[4].as_int(), 4);
// dropn
stack.dropn(2);
assert_eq!(stack.len(), 11);
assert_eq!(stack[0].as_int(), 6);
assert_eq!(stack[1].as_int(), 5);
assert_eq!(stack[2].as_int(), 4);
// push
stack.push(six);
stack.push(seven);
assert_eq!(stack.len(), 13);
assert_eq!(stack[0].as_int(), 7);
assert_eq!(stack[1].as_int(), 6);
assert_eq!(stack[2].as_int(), 6);
assert_eq!(stack[3].as_int(), 5);
assert_eq!(stack[4].as_int(), 4);
}
}