1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#![no_std]
extern crate alloc;
mod layout;
use alloc::{boxed::Box, vec::Vec};
use core::{fmt, num::NonZeroU16, str::FromStr};
pub use self::layout::Alignable;
/// Represents the type of a value
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Type {
/// This indicates a failure to type a value, or a value which is untypable
Unknown,
/// This type is used to indicate the absence of a value, such as a function which returns
/// nothing
Unit,
/// This type is the bottom type, and represents divergence, akin to Rust's Never/! type
Never,
I1,
I8,
U8,
I16,
U16,
I32,
U32,
I64,
U64,
I128,
U128,
U256,
F64,
/// Field element
Felt,
/// A pointer to a value in the default byte-addressable address space used by the IR.
///
/// Pointers of this type will be translated to an appropriate address space during code
/// generation.
Ptr(Box<Type>),
/// A pointer to a valude in Miden's native word-addressable address space.
///
/// In the type system, we represent the type of the pointee, as well as an address space
/// identifier.
///
/// This pointer type is represented on Miden's operand stack as a u64 value, consisting of
/// two 32-bit elements, the most-significant bits being on top of the stack:
///
/// 1. Metadata for the pointer (in the upper 32-bit limb):
/// * The least-significant 2 bits represent a zero-based element index (range is 0-3)
/// * The next most significant 4 bits represent a zero-based byte index (range is 0-31)
/// * The remaining 26 bits represent an address space identifier
/// 2. The lower 32-bit limb contains the word-aligned address, which forms the base address of
/// the pointer.
///
/// Dereferencing a pointer of this type involves popping the pointer metadata, and determining
/// what type of load to issue based on the size of the value being loaded, and where the
/// start of the data is according to the metadata. Then the word-aligned address is popped
/// and the value is loaded.
///
/// If the load is naturally aligned, i.e. the element index and byte offset are zero, and the
/// size is exactly one element or word; then a mem_load or mem_loadw are issued and no
/// further action is required. If the load is not naturally aligned, then either one or
/// two words will be loaded, depending on the type being loaded, unused elements will be
/// dropped, and if the byte offset is non-zero, the data will be shifted bitwise into
/// alignment on an element boundary.
NativePtr(Box<Type>, AddressSpace),
/// A compound type of fixed shape and size
Struct(StructType),
/// A vector of fixed size
Array(Box<Type>, usize),
/// A dynamically sized list of values of the given type
///
/// NOTE: Currently this only exists to support the Wasm Canonical ABI,
/// but it has no defined represenation yet, so in practice cannot be
/// used in most places except during initial translation in the Wasm frontend.
List(Box<Type>),
}
impl Type {
/// Returns true if this type is a zero-sized type, which includes:
///
/// * Types with no size, e.g. `Type::Unit`
/// * Zero-sized arrays
/// * Arrays with a zero-sized element type
/// * Structs composed of nothing but zero-sized fields
pub fn is_zst(&self) -> bool {
match self {
Self::Unknown => false,
Self::Never | Self::Unit => true,
Self::Array(_, 0) => true,
Self::Array(ref elem_ty, _) => elem_ty.is_zst(),
Self::Struct(ref struct_ty) => struct_ty.fields.iter().all(|f| f.ty.is_zst()),
Self::I1
| Self::I8
| Self::U8
| Self::I16
| Self::U16
| Self::I32
| Self::U32
| Self::I64
| Self::U64
| Self::I128
| Self::U128
| Self::U256
| Self::F64
| Self::Felt
| Self::Ptr(_)
| Self::NativePtr(..)
| Self::List(_) => false,
}
}
pub fn is_numeric(&self) -> bool {
matches!(
self,
Self::I1
| Self::I8
| Self::U8
| Self::I16
| Self::U16
| Self::I32
| Self::U32
| Self::I64
| Self::U64
| Self::I128
| Self::U128
| Self::U256
| Self::F64
| Self::Felt
)
}
pub fn is_integer(&self) -> bool {
matches!(
self,
Self::I1
| Self::I8
| Self::U8
| Self::I16
| Self::U16
| Self::I32
| Self::U32
| Self::I64
| Self::U64
| Self::I128
| Self::U128
| Self::U256
| Self::Felt
)
}
pub fn is_signed_integer(&self) -> bool {
matches!(self, Self::I8 | Self::I16 | Self::I32 | Self::I64 | Self::I128)
}
pub fn is_unsigned_integer(&self) -> bool {
matches!(self, Self::I1 | Self::U8 | Self::U16 | Self::U32 | Self::U64 | Self::U128)
}
/// Get this type as its unsigned integral twin, e.g. i32 becomes u32.
///
/// This function will panic if the type is not an integer type, or has no unsigned
/// representation
pub fn as_unsigned(&self) -> Type {
match self {
Self::I8 | Self::U8 => Self::U8,
Self::I16 | Self::U16 => Self::U16,
Self::I32 | Self::U32 => Self::U32,
Self::I64 | Self::U64 => Self::U64,
Self::I128 | Self::U128 => Self::U128,
Self::Felt => Self::Felt,
ty => panic!("invalid conversion to unsigned integer type: {ty} is not an integer"),
}
}
/// Get this type as its signed integral twin, e.g. u32 becomes i32.
///
/// This function will panic if the type is not an integer type, or has no signed representation
pub fn as_signed(&self) -> Type {
match self {
Self::I8 | Self::U8 => Self::I8,
Self::I16 | Self::U16 => Self::I16,
Self::I32 | Self::U32 => Self::I32,
Self::I64 | Self::U64 => Self::I64,
Self::I128 | Self::U128 => Self::I128,
Self::Felt => {
panic!("invalid conversion to signed integer type: felt has no signed equivalent")
}
ty => panic!("invalid conversion to signed integer type: {ty} is not an integer"),
}
}
#[inline]
pub fn is_float(&self) -> bool {
matches!(self, Self::F64)
}
#[inline]
pub fn is_felt(&self) -> bool {
matches!(self, Self::Felt)
}
#[inline]
pub fn is_pointer(&self) -> bool {
matches!(self, Self::Ptr(_) | Self::NativePtr(_, _))
}
#[inline]
pub fn is_struct(&self) -> bool {
matches!(self, Self::Struct(_))
}
#[inline]
pub fn is_array(&self) -> bool {
matches!(self, Self::Array(_, _))
}
/// Returns true if `self` and `other` are compatible operand types for a binary operator, e.g.
/// `add`
///
/// In short, the rules are as follows:
///
/// * The operand order is assumed to be `self <op> other`, i.e. `op` is being applied to `self`
/// using `other`. The left-hand operand is used as the "controlling" type for the operator,
/// i.e. it determines what instruction will be used to perform the operation.
/// * The operand types must be numeric, or support being manipulated numerically
/// * If the controlling type is unsigned, it is never compatible with signed types, because
/// Miden instructions for unsigned types use a simple unsigned binary encoding, thus they
/// will not handle signed operands using two's complement correctly.
/// * If the controlling type is signed, it is compatible with both signed and unsigned types,
/// as long as the values fit in the range of the controlling type, e.g. adding a `u16` to an
/// `i32` is fine, but adding a `u32` to an `i32` is not.
/// * Pointer types are permitted to be the controlling type, and since they are represented
/// using u32, they have the same compatibility set as u32 does. In all other cases, pointer
/// types are treated the same as any other non-numeric type.
/// * Non-numeric types are always incompatible, since no operators support these types
pub fn is_compatible_operand(&self, other: &Type) -> bool {
match (self, other) {
(Type::I1, Type::I1) => true,
(Type::I8, Type::I8) => true,
(Type::U8, Type::U8) => true,
(Type::I16, Type::I8 | Type::U8 | Type::I16) => true,
(Type::U16, Type::U8 | Type::U16) => true,
(Type::I32, Type::I8 | Type::U8 | Type::I16 | Type::U16 | Type::I32) => true,
(Type::U32, Type::U8 | Type::U16 | Type::U32) => true,
(
Type::I64,
Type::I8 | Type::U8 | Type::I16 | Type::U16 | Type::I32 | Type::U32 | Type::I64,
) => true,
(Type::U64, Type::U8 | Type::U16 | Type::U32 | Type::U64 | Type::Felt) => true,
(
Type::I128,
Type::I8
| Type::U8
| Type::I16
| Type::U16
| Type::I32
| Type::U32
| Type::I64
| Type::U64
| Type::Felt
| Type::I128,
) => true,
(
Type::U128,
Type::U8 | Type::U16 | Type::U32 | Type::U64 | Type::Felt | Type::U128,
) => true,
(Type::U256, rty) => rty.is_unsigned_integer(),
(Type::Felt, Type::U8 | Type::U16 | Type::U32 | Type::U64 | Type::Felt) => true,
(Type::F64, Type::F64) => true,
(Type::Ptr(_) | Type::NativePtr(..), Type::U8 | Type::U16 | Type::U32) => true,
_ => false,
}
}
#[inline]
pub fn pointee(&self) -> Option<&Type> {
use core::ops::Deref;
match self {
Self::Ptr(ty) | Self::NativePtr(ty, _) => Some(ty.deref()),
_ => None,
}
}
}
impl From<StructType> for Type {
#[inline]
fn from(ty: StructType) -> Type {
Type::Struct(ty)
}
}
impl fmt::Display for Type {
/// Print this type for display using the provided module context
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use core::fmt::Write;
match self {
Self::Unknown => f.write_str("?"),
Self::Unit => f.write_str("()"),
Self::Never => f.write_char('!'),
Self::I1 => f.write_str("i1"),
Self::I8 => f.write_str("i8"),
Self::U8 => f.write_str("u8"),
Self::I16 => f.write_str("i16"),
Self::U16 => f.write_str("u16"),
Self::I32 => f.write_str("i32"),
Self::U32 => f.write_str("u32"),
Self::I64 => f.write_str("i64"),
Self::U64 => f.write_str("u64"),
Self::I128 => f.write_str("i128"),
Self::U128 => f.write_str("u128"),
Self::U256 => f.write_str("u256"),
Self::F64 => f.write_str("f64"),
Self::Felt => f.write_str("felt"),
Self::Ptr(inner) => write!(f, "(ptr {inner})"),
Self::NativePtr(inner, AddressSpace::Unknown) => {
write!(f, "(ptr (addrspace ?) {inner})")
}
Self::NativePtr(inner, AddressSpace::Root) => {
write!(f, "(ptr (addrspace 0) {inner})")
}
Self::NativePtr(inner, AddressSpace::Id(id)) => {
write!(f, "(ptr (addrspace {id}) {inner})")
}
Self::Struct(sty) => write!(f, "{sty}"),
Self::Array(element_ty, arity) => write!(f, "(array {element_ty} {arity})"),
Self::List(ty) => write!(f, "(list {ty})"),
}
}
}
/// This represents metadata about how a structured type will be represented in memory
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TypeRepr {
/// This corresponds to the C ABI representation for a given type
#[default]
Default,
/// This modifies the default representation, by raising the minimum alignment.
///
/// The alignment must be a power of two, e.g. 32, and values from 1 to 2^16 are allowed.
///
/// The alignment must be greater than the default minimum alignment of the type
/// or this representation has no effect.
Align(NonZeroU16),
/// This modifies the default representation, by lowering the minimum alignment of
/// a type, and in the case of structs, changes the alignments of the fields to be
/// the smaller of the specified alignment and the default alignment. This has the
/// effect of changing the layout of a struct.
///
/// Notably, `Packed(1)` will result in a struct that has no alignment requirement,
/// and no padding between fields.
///
/// The alignment must be a power of two, e.g. 32, and values from 1 to 2^16 are allowed.
///
/// The alignment must be smaller than the default alignment, or this representation
/// has no effect.
Packed(NonZeroU16),
/// This may only be used on structs with no more than one non-zero sized field, and
/// indicates that the representation of that field should be used for the struct.
Transparent,
}
impl TypeRepr {
#[inline]
pub fn packed(align: u16) -> Self {
Self::Packed(
NonZeroU16::new(align).expect("invalid alignment: expected value in range 1..=65535"),
)
}
#[inline]
pub fn align(align: u16) -> Self {
Self::Align(
NonZeroU16::new(align).expect("invalid alignment: expected value in range 1..=65535"),
)
}
/// Return true if this type representation is transparent
pub fn is_transparent(&self) -> bool {
matches!(self, Self::Transparent)
}
/// Return true if this type representation is packed
pub fn is_packed(&self) -> bool {
matches!(self, Self::Packed(_))
}
/// Get the custom alignment given for this type representation, if applicable
pub fn min_alignment(&self) -> Option<usize> {
match self {
Self::Packed(align) | Self::Align(align) => Some(align.get() as usize),
_ => None,
}
}
}
/// This represents metadata about a field of a [StructType]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct StructField {
/// The index of this field in the final layout
pub index: u8,
/// The specified alignment for this field
pub align: u16,
/// The offset of this field relative to the previous field, or from the base of the struct
pub offset: u32,
/// The type of this field
pub ty: Type,
}
impl fmt::Display for StructField {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", &self.ty)
}
}
/// This represents a structured aggregate type
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct StructType {
/// The representation to use for this type
pub(crate) repr: TypeRepr,
/// The computed size of this struct
pub(crate) size: u32,
/// The fields of this struct, in the original order specified
///
/// The actual order of fields in the final layout is determined by the index
/// associated with each field, not the index in this vector, although for `repr(C)`
/// structs they will be the same
pub(crate) fields: Vec<StructField>,
}
impl StructType {
/// Create a new struct with default representation, i.e. a struct with representation of
/// `TypeRepr::Packed(1)`.
#[inline]
pub fn new<I: IntoIterator<Item = Type>>(fields: I) -> Self {
Self::new_with_repr(TypeRepr::Default, fields)
}
/// Create a new struct with the given representation.
///
/// This function will panic if the rules of the given representation are violated.
pub fn new_with_repr<I: IntoIterator<Item = Type>>(repr: TypeRepr, fields: I) -> Self {
let tys = fields.into_iter().collect::<Vec<_>>();
let mut fields = Vec::with_capacity(tys.len());
let size = match repr {
TypeRepr::Transparent => {
let mut offset = 0u32;
for (index, ty) in tys.into_iter().enumerate() {
let index: u8 =
index.try_into().expect("invalid struct: expected no more than 255 fields");
let field_size: u32 = ty
.size_in_bytes()
.try_into()
.expect("invalid type: size is larger than 2^32 bytes");
if field_size == 0 {
fields.push(StructField {
index,
align: 1,
offset,
ty,
});
} else {
let align = ty.min_alignment().try_into().expect(
"invalid struct field alignment: expected power of two between 1 and \
2^16",
);
assert_eq!(
offset, 0,
"invalid transparent representation for struct: repr(transparent) is \
only valid for structs with a single non-zero sized field"
);
fields.push(StructField {
index,
align,
offset,
ty,
});
offset += field_size;
}
}
offset
}
repr => {
let mut offset = 0u32;
let default_align: u16 =
tys.iter().map(|t| t.min_alignment()).max().unwrap_or(1).try_into().expect(
"invalid struct field alignment: expected power of two between 1 and 2^16",
);
let align = match repr {
TypeRepr::Align(align) => core::cmp::max(align.get(), default_align),
TypeRepr::Packed(align) => core::cmp::min(align.get(), default_align),
TypeRepr::Transparent | TypeRepr::Default => default_align,
};
for (index, ty) in tys.into_iter().enumerate() {
let index: u8 =
index.try_into().expect("invalid struct: expected no more than 255 fields");
let field_size: u32 = ty
.size_in_bytes()
.try_into()
.expect("invalid type: size is larger than 2^32 bytes");
let default_align: u16 = ty.min_alignment().try_into().expect(
"invalid struct field alignment: expected power of two between 1 and 2^16",
);
let align: u16 = match repr {
TypeRepr::Packed(align) => core::cmp::min(align.get(), default_align),
_ => default_align,
};
offset += offset.align_offset(align as u32);
fields.push(StructField {
index,
align,
offset,
ty,
});
offset += field_size;
}
offset.align_up(align as u32)
}
};
Self { repr, size, fields }
}
/// Get the [TypeRepr] for this struct
#[inline]
pub const fn repr(&self) -> TypeRepr {
self.repr
}
/// Get the minimum alignment for this struct
pub fn min_alignment(&self) -> usize {
self.repr
.min_alignment()
.unwrap_or_else(|| self.fields.iter().map(|f| f.align as usize).max().unwrap_or(1))
}
/// Get the total size in bytes required to hold this struct, including alignment padding
#[inline]
pub fn size(&self) -> usize {
self.size as usize
}
/// Get the struct field at `index`, relative to declaration order.
pub fn get(&self, index: usize) -> &StructField {
&self.fields[index]
}
/// Get the struct fields as a slice
pub fn fields(&self) -> &[StructField] {
self.fields.as_slice()
}
/// Returns true if this struct has no fields
pub fn is_empty(&self) -> bool {
self.fields.is_empty()
}
/// Get the length of this struct (i.e. number of fields)
pub fn len(&self) -> usize {
self.fields.len()
}
}
impl TryFrom<Type> for StructType {
type Error = Type;
fn try_from(ty: Type) -> Result<Self, Self::Error> {
match ty {
Type::Struct(ty) => Ok(ty),
other => Err(other),
}
}
}
impl fmt::Display for StructType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
TypeRepr::Default => f.write_str("(struct ")?,
TypeRepr::Transparent => f.write_str("(struct (repr transparent) ")?,
TypeRepr::Align(align) => write!(f, "(struct (repr (align {align})) ")?,
TypeRepr::Packed(align) => write!(f, "(struct (repr (packed {align})) ")?,
};
for (i, field) in self.fields.iter().enumerate() {
if i > 0 {
write!(f, " {}", field)?;
} else {
write!(f, "{}", field)?;
}
}
f.write_str(")")
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Default)]
pub enum Abi {
/// The type signature of a function in canonical form. Canonical in this context means that
/// no special lowering is required between caller and callee - all the compiler needs to
/// deal with are the details of the specific calling convention.
#[default]
Canonical,
/// The type signature of a function expressed in terms of the Canonical ABI of the Wasm
/// Component Model. This indicates that additional lowering/lifting code is required between
/// caller and callee. It also dictates the calling convention for the callee.
Wasm,
}
impl fmt::Display for Abi {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Canonical => f.write_str("canon"),
Self::Wasm => f.write_str("wasm"),
}
}
}
/// This represents the type of a function, including the ABI, result types, and parameter types
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct FunctionType {
/// The ABI of this function type
pub abi: Abi,
/// The result types of this function
pub results: Vec<Type>,
/// The parameter types of this function
pub params: Vec<Type>,
}
impl FunctionType {
/// Create a new function type with the canonical ABI
pub fn new<P: IntoIterator<Item = Type>, R: IntoIterator<Item = Type>>(
params: P,
results: R,
) -> Self {
Self {
abi: Abi::Canonical,
results: results.into_iter().collect(),
params: params.into_iter().collect(),
}
}
/// Create a new function type with the Wasm Component Model ABI
pub fn new_wasm<P: IntoIterator<Item = Type>, R: IntoIterator<Item = Type>>(
params: P,
results: R,
) -> Self {
Self {
abi: Abi::Wasm,
results: results.into_iter().collect(),
params: params.into_iter().collect(),
}
}
/// Set the ABI for this function type
pub fn with_abi(mut self, abi: Abi) -> Self {
self.abi = abi;
self
}
pub fn arity(&self) -> usize {
self.params.len()
}
pub fn results(&self) -> &[Type] {
self.results.as_slice()
}
pub fn params(&self) -> &[Type] {
self.params.as_slice()
}
pub fn abi(&self) -> Abi {
self.abi
}
}
impl fmt::Display for FunctionType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use core::fmt::Write;
f.write_str("(func")?;
f.write_fmt(format_args!(" (abi {abi}) ", abi = self.abi))?;
for ty in self.params.iter() {
write!(f, " (param {ty})")?;
}
if !self.results.is_empty() {
f.write_str(" (result")?;
for ty in self.results.iter() {
write!(f, " {ty}")?;
}
f.write_char(')')?;
}
f.write_char(')')
}
}
/// This error is raised when parsing an [AddressSpace]
#[derive(Debug)]
pub enum InvalidAddressSpaceError {
InvalidId,
InvalidIdOverflow,
}
impl fmt::Display for InvalidAddressSpaceError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::InvalidId => {
f.write_str("invalid address space identifier: expected integer value or 'unknown'")
}
Self::InvalidIdOverflow => f.write_str(
"invalid address space identifier: value is too large, expected range is 0..=65535",
),
}
}
}
/// This type uniquely identifies the address space associated with a native
/// Miden pointer value
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AddressSpace {
/// The address space is not known statically, but is available
/// at runtime in the pointer metadata.
///
/// This is also the type associated with user contexts in Miden,
/// as it cannot be known statically how many such contexts will
/// be used at runtime.
#[default]
Unknown,
/// This address space corresponds to the root context in Miden
///
/// The root context is the default context in the program entrypoint,
/// and for use cases outside the typical smart contract usage, may be
/// the only context in use at any given time.
///
/// This address space corresponds to an address space identifier of 0.
Root,
/// This address space corresponds to a statically allocated separate
/// memory region. This can be used to represent things in separate
/// linear memory regions which are accessible simultaneously.
///
/// Any non-zero identifier can be used for these address spaces.
///
/// NOTE: It is up to the user to ensure that there are no conflicts
/// between address space identifiers.
Id(NonZeroU16),
}
impl fmt::Display for AddressSpace {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Unknown => f.write_str("?"),
Self::Root => f.write_str("0"),
Self::Id(id) => write!(f, "{id}"),
}
}
}
impl FromStr for AddressSpace {
type Err = InvalidAddressSpaceError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"unknown" => Ok(Self::Unknown),
id => {
use core::num::IntErrorKind;
match NonZeroU16::from_str(id) {
Ok(id) => Ok(Self::Id(id)),
Err(err) => match err.kind() {
IntErrorKind::Zero => Ok(Self::Root),
IntErrorKind::PosOverflow | IntErrorKind::NegOverflow => {
Err(InvalidAddressSpaceError::InvalidIdOverflow)
}
_ => Err(InvalidAddressSpaceError::InvalidId),
},
}
}
}
}
}