1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use std::{any::Any, fmt, marker::PhantomData, rc::Rc};

use crate::{
    builtin_traits::{BuiltinTrait, BuiltinTraitFunction},
    ffvariants,
    hl::userdata::Type,
    ll::{
        bytecode::{
            BuiltinTraits, DispatchTable, Environment, Function, FunctionKind, MethodSignature,
        },
        gc::{Gc, Memory},
        value::{self, Closure},
    },
    Error, ForeignFunction, FunctionParameterCount, MethodParameterCount, Value,
};

struct UnresolvedMethodSignature {
    name: Rc<str>,
    parameter_count: MethodParameterCount,
    builtin_trait: BuiltinTrait,
}

impl UnresolvedMethodSignature {
    fn resolve(self, builtin_traits: &BuiltinTraits) -> MethodSignature {
        MethodSignature {
            name: self.name,
            parameter_count: self.parameter_count,
            trait_id: match self.builtin_trait {
                BuiltinTrait::None => None,
                BuiltinTrait::Iterator => Some(builtin_traits.iterator),
            },
        }
    }
}

/// A descriptor for a dispatch table. Defines which methods are available on the table, as well
/// as their implementations.
#[derive(Default)]
pub(crate) struct DispatchTableDescriptor {
    methods: Vec<(UnresolvedMethodSignature, FunctionKind)>,
}

impl DispatchTableDescriptor {
    fn add_function_to_dtable(
        env: &mut Environment,
        gc: &mut Memory,
        dtable: &mut DispatchTable,
        builtin_traits: &BuiltinTraits,
        signature: UnresolvedMethodSignature,
        f: FunctionKind,
    ) -> Result<(), Error> {
        let name = Rc::from(format!("{}.{}", &dtable.pretty_name, signature.name));
        let function_id = env
            .create_function(Function {
                name: Rc::clone(&name),
                parameter_count: FunctionParameterCount::Fixed(u16::from(
                    signature.parameter_count.to_count_without_self(),
                )),
                kind: f,
                hidden_in_stack_traces: false,
            })
            .map_err(|_| Error::TooManyFunctions)?;
        let signature = signature.resolve(builtin_traits);
        let index =
            env.get_or_create_method_index(&signature).map_err(|_| Error::TooManyMethods)?;
        dtable.set_method(index, gc.allocate(Closure { name, function_id, captures: Vec::new() }));
        Ok(())
    }

    /// Builds a dispatch table from this descriptor.
    pub(crate) fn build_dtable(
        self,
        mut dtable: DispatchTable,
        env: &mut Environment,
        gc: &mut Memory,
        builtin_traits: &BuiltinTraits,
    ) -> Result<DispatchTable, Error> {
        for (signature, f) in self.methods {
            Self::add_function_to_dtable(env, gc, &mut dtable, builtin_traits, signature, f)?;
        }
        Ok(dtable)
    }
}

/// A builder that allows for binding APIs with user-defined types.
///
/// By default, the Mica VM does not know anything and cannot interact with Rust types. This API,
/// in conjunction with [`Engine::add_type`][crate::Engine::add_type], serves as an extension point
/// to let Mica programs interact with Rust data.
///
/// # Opaque user data
///
/// Rust values passed into Mica VMs by default are **opaque**, which means they possess no Mica
/// type information. Opaque values do not have any methods and have unfriendly type names (as
/// returned by [`std::any::type_name`]).
///
/// Opaque user data do possess Rust's runtime type information however, so it's possible to pass
/// them back into arguments of Rust functions available in Mica.
pub struct TypeBuilder<T>
where
    T: ?Sized,
{
    type_name: Rc<str>,
    type_dtable: DispatchTableDescriptor,
    instance_dtable: DispatchTableDescriptor,
    _data: PhantomData<T>,
}

impl<T> TypeBuilder<T>
where
    T: ?Sized,
{
    /// Creates a new [`TypeBuilder`].
    ///
    /// The `type_name` is used for referring to the type inside scripts and should reflect the Rust
    /// type name. For generic types, it's best to define a concrete [type alias][type] to make the
    /// binding code a little bit more self-documenting.
    ///
    ///   [type]: https://doc.rust-lang.org/stable/std/keyword.type.html
    ///
    /// # Examples
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use mica::{Engine, TypeBuilder, UserData};
    ///
    /// struct Empty;
    /// impl UserData for Empty {}
    ///
    /// // A type builder is useless on its own, so we need to create an engine first.
    /// let mut engine = Engine::new();
    /// engine.add_type(TypeBuilder::<Empty>::new("Empty"))?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(type_name: impl Into<Rc<str>>) -> Self
    where
        T: Any,
    {
        let type_name = type_name.into();
        Self {
            type_dtable: Default::default(),
            instance_dtable: Default::default(),
            type_name,
            _data: PhantomData,
        }
    }

    /// Internal converter for use with `BareExactArgs` parameter counts.
    fn function_to_method_parameter_count(count: FunctionParameterCount) -> MethodParameterCount {
        MethodParameterCount::from_count_without_self(
            count.to_fixed().expect("BareExactArgs functions are never varargs"),
        )
        .expect("generated ForeignFunction variants only support up to 8 arguments") // Thus, overflow is impossible.
    }

    /// Adds a static function to the struct.
    ///
    /// The function must follow the "bare" calling convention, in that it doesn't accept a
    /// reference to `T` as its first parameter.
    ///
    /// # Examples
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use mica::{Engine, TypeBuilder, UserData};
    ///
    /// struct Constants;
    /// impl UserData for Constants {}
    ///
    /// let mut engine = Engine::new();
    /// engine.add_type(
    ///     TypeBuilder::<Constants>::new("Constants")
    ///         .add_static("the_meaning_of_life_universe_and_everything", || 42_i32),
    /// )?;
    ///
    /// let i: i32 = engine
    ///     .start("constant.mi", "Constants.the_meaning_of_life_universe_and_everything")?
    ///     .trampoline()?;
    /// assert_eq!(i, 42);
    /// # Ok(())
    /// # }
    /// ```
    pub fn add_static<F, V>(self, name: &str, f: F) -> Self
    where
        V: ffvariants::BareExactArgs,
        F: ForeignFunction<V, ParameterCount = FunctionParameterCount>,
    {
        self.add_raw_static(
            name,
            Self::function_to_method_parameter_count(F::PARAMETER_COUNT),
            FunctionKind::Foreign(f.into_raw_foreign_function()),
        )
    }

    /// Adds an instance function to the struct.
    ///
    /// The function must follow the "method" calling convention, in that it accepts `&T` or
    /// `&mut T` as its first parameter.
    ///
    /// # Examples
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use mica::{Engine, TypeBuilder, UserData};
    ///
    /// struct Counter {
    ///     value: i32,
    /// }
    ///
    /// impl UserData for Counter {}
    ///
    /// impl Counter {
    ///     fn increment(&mut self) {
    ///         self.value += 1;
    ///     }
    ///
    ///     fn value(&self) -> i32 {
    ///         self.value
    ///     }
    /// }
    ///
    /// let mut engine = Engine::new();
    /// engine.add_type(
    ///     TypeBuilder::<Counter>::new("Counter")
    ///         .add_static("new", || Counter { value: 0 })
    ///         .add_function("increment", Counter::increment)
    ///         .add_function("value", Counter::value),
    /// )?;
    ///
    /// let i: i32 = engine
    ///     .start(
    ///         "counter.mi",
    ///         r#" count = Counter.new()
    ///             count.increment()
    ///             count.increment()
    ///             count.value "#
    ///     )?
    ///     .trampoline()?;
    /// assert_eq!(i, 2);
    /// # Ok(())
    /// # }
    /// ```
    pub fn add_function<F, V>(self, name: &str, f: F) -> Self
    where
        V: ffvariants::Method<T>,
        F: ForeignFunction<V, ParameterCount = MethodParameterCount>,
    {
        self.add_raw_function(
            name,
            F::PARAMETER_COUNT,
            FunctionKind::Foreign(f.into_raw_foreign_function()),
        )
    }

    /// Adds a function that's part of a built-in trait implementation.
    ///
    /// The function must have a signature that's compatible with the built-in trait in question.
    /// See the [`builtin_traits`][crate::builtin_traits] module for more information on each trait,
    /// its methods, and their signatures.
    ///
    /// # Examples
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use mica::{builtin_traits::iterator, Engine, TypeBuilder, UserData};
    ///
    /// struct Count10 {
    ///     i: i32,
    /// }
    ///
    /// impl UserData for Count10 {}
    ///
    /// impl Count10 {
    ///     fn has_next(&self) -> bool {
    ///         self.i < 10
    ///     }
    ///
    ///     fn next(&mut self) {
    ///         self.i += 1;
    ///     }
    /// }
    ///
    /// let mut engine = Engine::new();
    /// engine.add_type(
    ///     TypeBuilder::<Count10>::new("Count10")
    ///         .add_static("new", || Count10 { i: 1 })
    ///         .add_builtin_trait_function(iterator::HasNext, Count10::has_next)
    ///         .add_builtin_trait_function(iterator::Next, Count10::next),
    /// )?;
    ///
    /// let i: i32 = engine
    ///     .start(
    ///         "counter.mi",
    ///         r#"
    ///             i = 1
    ///             for _ in Count10.new() do
    ///                 i = i * 2
    ///             end
    ///             i
    ///         "#
    ///     )?
    ///     .trampoline()?;
    /// assert_eq!(i, 512);
    /// # Ok(())
    /// # }
    /// ```
    pub fn add_builtin_trait_function<S, B, F>(mut self, which: B, f: F) -> Self
    where
        B: BuiltinTraitFunction<S>,
        F: ForeignFunction<S, ParameterCount = MethodParameterCount>,
    {
        self.instance_dtable.methods.push((
            UnresolvedMethodSignature {
                name: Rc::from(B::NAME),
                parameter_count: F::PARAMETER_COUNT,
                builtin_trait: which.owning_trait(),
            },
            FunctionKind::Foreign(f.into_raw_foreign_function()),
        ));
        self
    }

    /// Adds a _raw_ instance function to the type.
    ///
    /// You should generally prefer [`add_function`][`Self::add_function`] instead of this.
    ///
    /// `parameter_count` should reflect the parameter count of the function. Method calls resolve
    /// differently from function calls, because they match the parameter count exactly - it is
    /// impossible to call the method `my_method/2` with three parameters. Thus, you can expect
    /// the `arguments` array inside of foreign functions to always have `parameter_count` elements.
    pub fn add_raw_function(
        mut self,
        name: &str,
        parameter_count: MethodParameterCount,
        f: FunctionKind,
    ) -> Self {
        self.instance_dtable.methods.push((
            UnresolvedMethodSignature {
                name: Rc::from(name),
                parameter_count,
                builtin_trait: BuiltinTrait::None,
            },
            f,
        ));
        self
    }

    /// Adds a _raw_ static function to the type.
    ///
    /// You should generally prefer [`add_static`][`Self::add_static`] instead of this.
    ///
    /// `parameter_count` should reflect the parameter count of the function. Method calls resolve
    /// differently from function calls, because they match the parameter count exactly - it is
    /// impossible to call the method `my_method/2` with three parameters. Thus, you can expect
    /// the `arguments` array inside of foreign functions to always have `parameter_count` elements.
    pub fn add_raw_static(
        mut self,
        name: &str,
        parameter_count: MethodParameterCount,
        f: FunctionKind,
    ) -> Self {
        self.type_dtable.methods.push((
            UnresolvedMethodSignature {
                name: Rc::from(name),
                parameter_count,
                builtin_trait: BuiltinTrait::None,
            },
            f,
        ));
        self
    }

    /// Builds the struct builder into its type dtable and instance dtable, respectively.
    pub(crate) fn build(
        self,
        env: &mut Environment,
        gc: &mut Memory,
        builtin_traits: &BuiltinTraits,
    ) -> Result<BuiltType<T>, Error>
    where
        T: Any + Sized,
    {
        let mut type_dtable = self.type_dtable.build_dtable(
            DispatchTable::new_for_type(Rc::clone(&self.type_name)),
            env,
            gc,
            builtin_traits,
        )?;

        let instance_dtable = self.instance_dtable.build_dtable(
            DispatchTable::new_for_instance(Rc::clone(&self.type_name)),
            env,
            gc,
            builtin_traits,
        )?;
        let instance_dtable = Gc::new(instance_dtable);

        env.add_user_dtable::<T>(Gc::clone(&instance_dtable));
        type_dtable.instance = Some(Gc::as_raw(&instance_dtable));

        let type_dtable = Gc::new(type_dtable);
        Ok(BuiltType {
            type_dtable,
            instance_dtable,
            type_name: self.type_name,
            _data: PhantomData,
        })
    }
}

impl<T> fmt::Debug for TypeBuilder<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("TypeBuilder").finish_non_exhaustive()
    }
}

/// Dispatch tables for a finished type.
pub(crate) struct BuiltType<T>
where
    T: ?Sized,
{
    pub(crate) type_name: Rc<str>,
    pub(crate) type_dtable: Gc<DispatchTable>,
    pub(crate) instance_dtable: Gc<DispatchTable>,
    _data: PhantomData<T>,
}

impl<T> BuiltType<T> {
    /// Makes a `Type<T>` user data value from the built type.
    pub(crate) fn make_type(&self, gc: &mut Memory) -> Value
    where
        T: Any,
    {
        gc.manage(&self.type_dtable);
        gc.manage(&self.instance_dtable);
        let user_data: Box<dyn value::UserData> =
            Box::new(Type::<T>::new(Gc::clone(&self.type_dtable)));
        Value::UserData(Gc::new(user_data))
    }
}