1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//! # metrix
//!
//! [![crates.io](https://img.shields.io/crates/v/metrix.svg)]
//! (https://crates.io/crates/metrix)
//! [![docs.rs](https://docs.rs/metrix/badge.svg)]
//! (https://docs.rs/metrix)
//! [![downloads](https://img.shields.io/crates/d/metrix.svg)]
//! (https://crates.io/crates/metrix)
//! [![Build Status](https://travis-ci.org/chridou/metrix.svg?branch=master)]
//! (https://travis-ci.org/chridou/metrix)
//! [![license-mit](http://img.shields.io/badge/license-MIT-blue.svg)]
//! (https://github.com/chridou/metrix/blob/master/LICENSE-MIT)
//! [![license-apache](http://img.shields.io/badge/license-APACHE-blue.svg)]
//! (https://github.com/chridou/metrix/blob/master/LICENSE-APACHE)
//!
//!
//! Metrics for monitoring applications and alerting.
//!
//! ## Goal
//!
//! Applications/services can have a lot of metrics and one of the greatest
//! challenges is organizing them. This is what `metrix` tries to help with.
//!
//! **Metrix** does not aim for providing exact numbers and aims for
//! applications monitoring only.
//!
//! This crate is in a very **early** stage and the API might still change.
//! There may be backends provided for monitoring solutions in the future
//! but currently only a snapshot that can be
//! serialized to JSON is provided.
//!
//! ## How does it work
//!
//! **Metrix** is based on observations collected while running your
//! application. These observations will then be sent to a backend where
//! the actual metrics(counters etc.) are updated. For the metrics configured
//! a snapshot can be queried.
//!
//! The primary focus of **metrix** is to organize these metrics. There are
//! several building blocks available. Most of them can have a name that will
//! then be part of a path within a snapshot.
//!
//! ### Labels
//!
//! Labels link observations to panels. Labels can be of any type that
//! implements `Clone + Eq + Send + 'static`. An `enum` is a good choice for a
//! label.
//!
//! ### Observations
//!
//! An abservation is made somewhere within your application. When an
//! observation is sent to the backend it must have a label attached. This label
//! is then matched against the label of a panel to determine whether an
//! observation is handled for updating or not.
//!
//! ### Instruments
//!
//! Instruments are gauges, meters, etc. An instrument gets updated by an
//! observation where an update is meaningful. Instruments are grouped by
//! `Panel`s.
//!
//! You can find instruments in the module `instruments`.
//!
//! ### Panels
//!
//! A `Panel` groups instruments under same same label. So each instrument
//! within a panel will be updated by observations that have the same label as
//! the panel.
//!
//! Lets say you defined a label `OutgoingRequests`. If you are interested
//! in the request rate and the latencies. You would then create a panel with a
//! label `OutgoingRequests` and add a histogram and a meter.
//!
//! ### Cockpit
//!
//! A cockpit aggregates multiple `Panel`s. A cockpit can be used to monitor
//! different tasks/parts of a component or worklflow. A cockpit
//! is bound to a label type.
//!
//! An example can be that you have service component that calls an external
//! HTTP client. You could be interested in successful calls and failed calls
//! individually. So for both cases you would create a value for your label
//! and then add two panels to the cockpit.
//!
//! Cockpits are in the module `cockpit`.
//!
//! ### Processors
//!
//! The most important processor is the `TelemetryProcessor`. It has
//! a label type as a type parameter and consist of a `TelemetryTransmitter`
//! that sends observations to the backend(used within your app)
//! and the actual `TelemetryProcessor` that forms the backend and
//! processes observations. The `TelemetryProcessor`
//! can **own** several cockpits for a label type.
//!
//! There is also a `ProcessorMount` that is label agnostic and can group
//! several processors. It can also have a name that will be included in the
//! snapshot.
//!
//! The processors can be found the module `processor`.
//!
//! ### Driver
//!
//! The driver **owns** processors and asks the **owned** processors
//! to process their messages. You need to add your processors to
//! a driver to start the machinery. A driver is also a processor
//! which means it can have a name and it can also be part of another
//! hierarchy.
//!
//! Each driver has its own thread for polling its processors
//! so even when attached to another
//! hierarchy all processors registered with the driver will only
//! be driven by that driver.
//!
//! ## Contributing
//!
//! Contributing is welcome. Criticism is also welcome!
//!
//! ## License
//!
//! Metrix is primarily distributed under the terms of
//! both the MIT license and the Apache License (Version 2.0).
//!
//! Copyright (c) 2018 Christian Douven
//!

extern crate exponential_decay_histogram;
extern crate json;
#[cfg(feature = "log")]
#[macro_use]
extern crate log;
extern crate metrics;

use snapshot::Snapshot;
use std::sync::mpsc;
use std::sync::{Arc, Mutex};
use std::time::{Duration, Instant};

use cockpit::{Cockpit, HandlesObservations};
use instruments::{Panel, ValueScaling};
use processor::TelemetryMessage;

pub mod cockpit;
pub mod driver;
pub mod instruments;
pub mod processor;
pub mod snapshot;
pub(crate) mod util;

/// An observation that has been made.
///
/// Be aware that not all instruments handle all
/// observations or values.
/// E.g. a `Meter` does not take the `value` of
/// an `Observation::ObservedOneValue` into account but
/// simply counts the observation as one occurence.
#[derive(Clone)]
pub enum Observation<L> {
    /// Observed many occurances at th given timestamp
    Observed {
        label: L,
        count: u64,
        timestamp: Instant,
    },
    /// Observed one occurrence at the given timestamp
    ObservedOne { label: L, timestamp: Instant },
    /// Observed one occurence with a value at a given timestamp.
    ObservedOneValue {
        label: L,
        value: u64,
        timestamp: Instant,
    },
}

impl<L> Observation<L>
where
    L: Clone,
{
    /// Extracts the label `L` from an observation.
    pub fn label(&self) -> &L {
        match *self {
            Observation::Observed { ref label, .. } => label,
            Observation::ObservedOne { ref label, .. } => label,
            Observation::ObservedOneValue { ref label, .. } => label,
        }
    }

    /// Scale by the given `ValueScaling`
    ///
    /// This will clone the `Observation`
    pub fn scaled(&self, scaling: ValueScaling) -> Observation<L> {
        let mut cloned = (*self).clone();

        match cloned {
            Observation::ObservedOneValue { ref mut value, .. } => match scaling {
                ValueScaling::NanosToMillis => *value = *value / 1_000_000,
                ValueScaling::NanosToMicros => *value = *value / 1_000,
            },
            _ => (),
        }

        cloned
    }
}

impl<L> Observation<L> {
    pub fn timestamp(&self) -> Instant {
        match *self {
            Observation::Observed { timestamp, .. } => timestamp,
            Observation::ObservedOne { timestamp, .. } => timestamp,
            Observation::ObservedOneValue { timestamp, .. } => timestamp,
        }
    }
}

/// Transmits telemetry data to the backend.
///
/// Implementors should tranfer `Observations` to
/// a backend and manipulate the instruments there to not
/// to interfere to much with the actual task being measured/observed
pub trait TransmitsTelemetryData<L> {
    /// Transit an observation to the backend.
    fn transmit(&self, observation: Observation<L>) -> &Self;

    /// Observed `count` occurences at time `timestamp`
    ///
    /// Convinience method. Simply calls `transmit`
    fn observed(&self, label: L, count: u64, timestamp: Instant) -> &Self {
        self.transmit(Observation::Observed {
            label,
            count,
            timestamp,
        })
    }

    /// Observed one occurence at time `timestamp`
    ///
    /// Convinience method. Simply calls `transmit`
    fn observed_one(&self, label: L, timestamp: Instant) -> &Self {
        self.transmit(Observation::ObservedOne { label, timestamp })
    }

    /// Observed one occurence with value `value` at time `timestamp`
    ///
    /// Convinience method. Simply calls `transmit`
    fn observed_one_value(&self, label: L, value: u64, timestamp: Instant) -> &Self {
        self.transmit(Observation::ObservedOneValue {
            label,
            value,
            timestamp,
        })
    }

    /// Sends a `Duration` as an observed value observed at `timestamp`.
    /// The `Duration` is converted to nanoseconds.
    fn observed_duration(&self, label: L, duration: Duration, timestamp: Instant) -> &Self {
        let nanos = (duration.as_secs() * 1_000_000_000) + (duration.subsec_nanos() as u64);
        self.observed_one_value(label, nanos, timestamp)
    }

    /// Observed `count` occurences at now.
    ///
    /// Convinience method. Simply calls `observed` with
    /// the current timestamp.
    fn observed_now(&self, label: L, count: u64) -> &Self {
        self.observed(label, count, Instant::now())
    }

    /// Observed one occurence now
    ///
    /// Convinience method. Simply calls `observed_one` with
    /// the current timestamp.
    fn observed_one_now(&self, label: L) -> &Self {
        self.observed_one(label, Instant::now())
    }

    /// Observed one occurence with value `value` now
    ///
    /// Convinience method. Simply calls `observed_one_value` with
    /// the current timestamp.
    fn observed_one_value_now(&self, label: L, value: u64) -> &Self {
        self.observed_one_value(label, value, Instant::now())
    }

    /// Sends a `Duration` as an observed value observed with the current
    /// timestamp.
    ///
    /// The `Duration` is converted to nanoseconds.
    fn observed_one_duration_now(&self, label: L, duration: Duration) -> &Self {
        self.observed_duration(label, duration, Instant::now())
    }

    /// Measures the time from `from` until now.
    ///
    /// The resultiong duration is an observed value
    /// with the measured duration in nanoseconds.
    fn measure_time(&self, label: L, from: Instant) -> &Self {
        let now = Instant::now();
        if from <= now {
            self.observed_duration(label, now - from, now);
        }

        self
    }

    /// Add a handler.
    fn add_handler(&self, handler: Box<HandlesObservations<Label = L>>) -> &Self;

    /// Add a `Copckpit`
    fn add_cockpit(&self, cockpit: Cockpit<L>) -> &Self;

    /// Add a `Panel` to a `Cockpit` if that `Cockpit` has the
    /// given name.
    fn add_panel_to_cockpit(&self, cockpit_name: String, panel: Panel<L>) -> &Self;
}

/// Transmits `Observation`s to the backend
///
/// This struct does **not** implement the `Sync` trait
/// and can therefore not be shared between threads.
/// See `synced()` method.
#[derive(Clone)]
pub struct TelemetryTransmitter<L> {
    sender: mpsc::Sender<TelemetryMessage<L>>,
}

impl<L> TelemetryTransmitter<L>
where
    L: Send + 'static,
{
    /// Get a `TelemetryTransmitterSync`.
    pub fn synced(&self) -> TelemetryTransmitterSync<L> {
        TelemetryTransmitterSync {
            sender: Arc::new(Mutex::new(self.sender.clone())),
        }
    }
}

impl<L> TransmitsTelemetryData<L> for TelemetryTransmitter<L> {
    fn transmit(&self, observation: Observation<L>) -> &Self {
        if let Err(_err) = self.sender.send(TelemetryMessage::Observation(observation)) {
            // maybe log...
        }

        self
    }

    fn add_handler(&self, handler: Box<HandlesObservations<Label = L>>) -> &Self {
        if let Err(_err) = self.sender.send(TelemetryMessage::AddHandler(handler)) {
            // maybe log...
        }

        self
    }

    fn add_cockpit(&self, cockpit: Cockpit<L>) -> &Self {
        if let Err(_err) = self.sender.send(TelemetryMessage::AddCockpit(cockpit)) {
            // maybe log...
        }

        self
    }

    fn add_panel_to_cockpit(&self, cockpit_name: String, panel: Panel<L>) -> &Self {
        if let Err(_err) = self.sender.send(TelemetryMessage::AddPanel {
            cockpit_name,
            panel,
        }) {
            // maybe log...
        }

        self
    }
}

/// Transmits `Observation`s to the backend and has the `Sync` marker.
///
/// This is almost the same as the `TelemetryTransmitter`.
///
/// Since a `Sender` for a channel is not `Sync` this
/// struct wraps the `Sender` in an `Arc<Mutex<_>>` so that
/// it can be shared between threads.
#[derive(Clone)]
pub struct TelemetryTransmitterSync<L> {
    sender: Arc<Mutex<mpsc::Sender<TelemetryMessage<L>>>>,
}

impl<L> TelemetryTransmitterSync<L>
where
    L: Send + 'static,
{
}

impl<L> TransmitsTelemetryData<L> for TelemetryTransmitterSync<L> {
    fn transmit(&self, observation: Observation<L>) -> &Self {
        if let Err(_err) = self.sender
            .lock()
            .unwrap()
            .send(TelemetryMessage::Observation(observation))
        {
            // maybe log...
        }

        self
    }

    fn add_handler(&self, handler: Box<HandlesObservations<Label = L>>) -> &Self {
        if let Err(_err) = self.sender
            .lock()
            .unwrap()
            .send(TelemetryMessage::AddHandler(handler))
        {
            // maybe log...
        }

        self
    }

    fn add_cockpit(&self, cockpit: Cockpit<L>) -> &Self {
        if let Err(_err) = self.sender
            .lock()
            .unwrap()
            .send(TelemetryMessage::AddCockpit(cockpit))
        {
            // maybe log...
        }

        self
    }

    fn add_panel_to_cockpit(&self, cockpit_name: String, panel: Panel<L>) -> &Self {
        if let Err(_err) = self.sender
            .lock()
            .unwrap()
            .send(TelemetryMessage::AddPanel {
                cockpit_name,
                panel,
            }) {
            // maybe log...
        }

        self
    }
}

/// Something that has a title and a description
///
/// This is mostly useful for snapshots. When a `Snapshot`
/// is taken there is usually a parameter `descriptive`
/// that determines whether title and description should
/// be part of a `Snapshot`. See also `PutsSnapshot`.
pub trait Descriptive {
    fn title(&self) -> Option<&str> {
        None
    }

    fn description(&self) -> Option<&str> {
        None
    }
}

/// Implementors are able to write their current data into given `Snapshot`.
///
/// Guidelines for writing snapshots:
///
/// * A `PutsSnapshot` that has a name should create a new sub snapshot
/// and add its values there
///
/// * A `PutsSnapshot` that does not have a name should add its values
/// directly to the given snapshot
///
/// * When `descriptive` is set to `true` `PutsSnapshot` should put
/// its `title` and `description` into the same `Snapshot` it put
/// its values(exception: instruments) thereby not overwriting already
/// existing descriptions so that the more general top level ones survive.
///
/// * When `descriptive` is set to `true` on an instrument the instrument
/// should put its description into the snapshot it got passed therby adding the
/// suffixes "_title" and "_description" to its name.
///
/// Implementors of this trait can be added to almost all components via
/// the `add_snapshooter` method which is also defined on trait
/// `AggregatesProcessors`.
pub trait PutsSnapshot: Send + 'static {
    /// Puts the current snapshot values into the given `Snapshot` thereby
    /// following the guidelines of `PutsSnapshot`.
    fn put_snapshot(&self, into: &mut Snapshot, descriptive: bool);
}