1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use crate::{
    common::{
        Delta, MetricIdentifier, MetricKind, MetricName, MetricScope, MetricScopeHandle,
        MetricValue,
    },
    data::{Counter, Gauge, Histogram},
    registry::{MetricRegistry, ScopeRegistry},
};
use fxhash::FxBuildHasher;
use quanta::Clock;
use std::error::Error;
use std::fmt;
use std::sync::Arc;

type FastHashMap<K, V> = hashbrown::HashMap<K, V, FxBuildHasher>;

/// Errors during sink creation.
#[derive(Debug, Clone)]
pub enum SinkError {
    /// The scope value given was invalid i.e. empty or illegal characters.
    InvalidScope,
}

impl Error for SinkError {}

impl fmt::Display for SinkError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            SinkError::InvalidScope => write!(f, "given scope is invalid"),
        }
    }
}

/// A value that can be used as a metric scope.
///
/// This helper trait allows us to accept either a single string or a slice of strings to use as a
/// scope, to avoid needing to allocate in the case where we want to be able to specify multiple
/// scope levels in a single go.
pub trait AsScoped<'a> {
    /// Creates a new [`MetricScope`] by adding `self` to the `base` scope.
    fn as_scoped(&'a self, base: MetricScope) -> MetricScope;
}

/// Handle for sending metric samples.
pub struct Sink {
    metric_registry: Arc<MetricRegistry>,
    metric_cache: FastHashMap<MetricIdentifier, MetricValue>,
    scope_registry: Arc<ScopeRegistry>,
    scope: MetricScope,
    scope_handle: MetricScopeHandle,
    clock: Clock,
}

impl Sink {
    pub(crate) fn new(
        metric_registry: Arc<MetricRegistry>,
        scope_registry: Arc<ScopeRegistry>,
        scope: MetricScope,
        clock: Clock,
    ) -> Sink {
        let scope_handle = scope_registry.register(scope.clone());

        Sink {
            metric_registry,
            metric_cache: FastHashMap::default(),
            scope_registry,
            scope,
            scope_handle,
            clock,
        }
    }

    /// Creates a scoped clone of this [`Sink`].
    ///
    /// Scoping controls the resulting metric name for any metrics sent by this [`Sink`].  For
    /// example, you might have a metric called `messages_sent`.
    ///
    /// With scoping, you could have independent versions of the same metric.  This is useful for
    /// having the same "base" metric name but with broken down values.
    ///
    /// Going further with the above example, if you had a server, and listened on multiple
    /// addresses, maybe you would have a scoped [`Sink`] per listener, and could end up with
    /// metrics that look like this:
    /// - `listener.a.messages_sent`
    /// - `listener.b.messages_sent`
    /// - `listener.c.messages_sent`
    /// - etc
    ///
    /// Scopes are also inherited.  If you create a scoped [`Sink`] from another [`Sink`] which is
    /// already scoped, the scopes will be merged together using a `.` as the string separator.
    /// This makes it easy to nest scopes.  Cloning a scoped [`Sink`], though, will inherit the
    /// same scope as the original.
    pub fn scoped<'a, S: AsScoped<'a> + ?Sized>(&self, scope: &'a S) -> Sink {
        let new_scope = scope.as_scoped(self.scope.clone());

        Sink::new(
            self.metric_registry.clone(),
            self.scope_registry.clone(),
            new_scope,
            self.clock.clone(),
        )
    }

    /// Gets the current time, in nanoseconds, from the internal high-speed clock.
    pub fn now(&self) -> u64 {
        self.clock.now()
    }

    /// Records a value for a counter identified by the given name.
    pub fn record_count<N: Into<MetricName>>(&mut self, name: N, value: u64) {
        let identifier =
            MetricIdentifier::Unlabeled(name.into(), self.scope_handle, MetricKind::Counter);
        let value_handle = self.get_cached_value_handle(identifier);
        value_handle.update_counter(value);
    }

    /// Records the value for a gauge identified by the given name.
    pub fn record_gauge<N: Into<MetricName>>(&mut self, name: N, value: i64) {
        let identifier =
            MetricIdentifier::Unlabeled(name.into(), self.scope_handle, MetricKind::Gauge);
        let value_handle = self.get_cached_value_handle(identifier);
        value_handle.update_gauge(value);
    }

    /// Records the value for a timing histogram identified by the given name.
    ///
    /// Both the start and end times must be supplied, but any values that implement [`Delta`] can
    /// be used which allows for raw values from [`quanta::Clock`] to be used, or measurements from
    /// [`Instant::now`].
    pub fn record_timing<N: Into<MetricName>, V: Delta>(&mut self, name: N, start: V, end: V) {
        let value = end.delta(start);
        self.record_value(name, value);
    }

    /// Records the value for a value histogram identified by the given name.
    pub fn record_value<N: Into<MetricName>>(&mut self, name: N, value: u64) {
        let identifier =
            MetricIdentifier::Unlabeled(name.into(), self.scope_handle, MetricKind::Histogram);
        let value_handle = self.get_cached_value_handle(identifier);
        value_handle.update_histogram(value);
    }

    /// Creates a handle to the given counter.
    ///
    /// This handle can be embedded into an existing type and used to directly update the
    /// underlying counter.  It is merely a proxy, so multiple handles to the same counter can be
    /// held and used.
    pub fn counter<N: Into<MetricName>>(&mut self, name: N) -> Counter {
        let identifier =
            MetricIdentifier::Unlabeled(name.into(), self.scope_handle, MetricKind::Counter);
        self.get_cached_value_handle(identifier).clone().into()
    }

    /// Creates a handle to the given gauge.
    ///
    /// This handle can be embedded into an existing type and used to directly update the
    /// underlying gauge.  It is merely a proxy, so multiple handles to the same gauge can be
    /// held and used.
    pub fn gauge<N: Into<MetricName>>(&mut self, name: N) -> Gauge {
        let identifier =
            MetricIdentifier::Unlabeled(name.into(), self.scope_handle, MetricKind::Gauge);
        self.get_cached_value_handle(identifier).clone().into()
    }

    /// Creates a handle to the given histogram.
    ///
    /// This handle can be embedded into an existing type and used to directly update the
    /// underlying histogram.  It is merely a proxy, so multiple handles to the same histogram
    /// can be held and used.
    pub fn histogram<N: Into<MetricName>>(&mut self, name: N) -> Histogram {
        let identifier =
            MetricIdentifier::Unlabeled(name.into(), self.scope_handle, MetricKind::Histogram);
        self.get_cached_value_handle(identifier).clone().into()
    }

    fn get_cached_value_handle(&mut self, identifier: MetricIdentifier) -> &MetricValue {
        // This gross hack gets around lifetime rules until full NLL is stable.  Without it, the
        // borrow checker doesn't understand the flow control and thinks the reference lives all
        // the way until the of the function, which breaks when we try to take a mutable reference
        // for inserting into the handle cache.
        if let Some(handle) = self.metric_cache.get(&identifier) {
            return unsafe { &*(handle as *const MetricValue) };
        }

        let handle = self.metric_registry.get_value_handle(identifier.clone());
        self.metric_cache.insert(identifier.clone(), handle);
        self.metric_cache.get(&identifier).unwrap()
    }
}

impl Clone for Sink {
    fn clone(&self) -> Sink {
        Sink {
            metric_registry: self.metric_registry.clone(),
            metric_cache: self.metric_cache.clone(),
            scope_registry: self.scope_registry.clone(),
            scope: self.scope.clone(),
            scope_handle: self.scope_handle,
            clock: self.clock.clone(),
        }
    }
}

impl<'a> AsScoped<'a> for str {
    fn as_scoped(&'a self, base: MetricScope) -> MetricScope {
        match base {
            MetricScope::Root => {
                let parts = vec![self.to_owned()];
                MetricScope::Nested(parts)
            }
            MetricScope::Nested(mut parts) => {
                parts.push(self.to_owned());
                MetricScope::Nested(parts)
            }
        }
    }
}

impl<'a, 'b, T> AsScoped<'a> for T
where
    &'a T: AsRef<[&'b str]>,
    T: 'a,
{
    fn as_scoped(&'a self, base: MetricScope) -> MetricScope {
        match base {
            MetricScope::Root => {
                let parts = self.as_ref().iter().map(|s| s.to_string()).collect();
                MetricScope::Nested(parts)
            }
            MetricScope::Nested(mut parts) => {
                let mut new_parts = self.as_ref().iter().map(|s| s.to_string()).collect();
                parts.append(&mut new_parts);
                MetricScope::Nested(parts)
            }
        }
    }
}