1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
use crate::constants::*;
use crate::types::*;

macro_rules! debug_validate {
    ($($val:expr),+) => (
        #[cfg(debug_assertions)]{
            $(
                let _ = $val.unwrap();
            )+
        }
    );
}

/// Calculate potential temperature assuming a 1000 hPa reference level.
///
/// Returns: Potential temperature.
#[inline]
pub fn theta<P, T>(pressure: P, temperature: T) -> Kelvin
where
    P: Pressure,
    T: Temperature,
    HectoPascal: From<P>,
    Kelvin: From<T>,
{
    use std::f64;

    debug_validate!(pressure, temperature);

    let HectoPascal(p) = HectoPascal::from(pressure);
    let Kelvin(t) = Kelvin::from(temperature);
    let theta = t * f64::powf(1000.0 / p, Rd / cp);
    let theta = Kelvin(theta);

    debug_validate!(theta);

    theta
}

/// Given a potential temperature and pressure, calculate the temperature.
///
/// Returns: The temperature.
#[inline]
pub fn temperature_from_theta<P, T>(theta: T, pressure: P) -> Kelvin
where
    P: Pressure,
    T: Temperature,
    HectoPascal: From<P>,
    Kelvin: From<T>,
{
    use std::f64;

    debug_validate!(pressure, theta);

    let HectoPascal(p) = HectoPascal::from(pressure);
    let Kelvin(theta) = Kelvin::from(theta);
    let t = theta * f64::powf(p / 1000.0, Rd / cp);
    let t = Kelvin(t);

    debug_validate!(t);

    t
}

// Constants used for the limits of applicability to the empirical relationships used for
// vapor pressure.
const MIN_T_VP_ICE: Celsius = Celsius(-80.0);
const MIN_T_VP_LIQUID: Celsius = Celsius(-80.0);
const MAX_T_VP_ICE: Celsius = Celsius(0.0);
const MAX_T_VP_LIQUID: Celsius = Celsius(50.0);

/// Get the vapor pressure over liquid water.
///
/// Alduchov, O.A., and Eskridge, R.E. Improved Magnus` form approximation of saturation vapor
/// pressure. United States: N. p., 1997. Web. doi:10.2172/548871.
///
/// Returns: The vapor pressure of water vapor.
#[inline]
pub fn vapor_pressure_liquid_water<T>(dew_point: T) -> Option<HectoPascal>
where
    T: Temperature + PartialOrd<Celsius>,
    Celsius: From<T>,
{
    debug_validate!(dew_point);

    if dew_point < MIN_T_VP_LIQUID || dew_point > MAX_T_VP_LIQUID {
        None
    } else {
        let Celsius(dp) = Celsius::from(dew_point);
        let vp = 6.1037 * f64::exp(17.641 * dp / (dp + 243.27));
        let vp = HectoPascal(vp);

        debug_validate!(vp);

        Some(vp)
    }
}

/// Get the dew point given the vapor pressure of water over liquid water. This function is the
/// inverse of `vapor_pressure_liquid_water`.
///
/// Returns: The dew point.
#[inline]
fn dew_point_from_vapor_pressure_over_liquid<P>(vp: P) -> Option<Celsius>
where
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(vp);

    let HectoPascal(vp) = HectoPascal::from(vp);
    let a = f64::ln(vp / 6.1037) / 17.641;
    let dp = a * 243.27 / (1.0 - a);
    let dp = Celsius(dp);
    if dp < MIN_T_VP_LIQUID || dp > MAX_T_VP_LIQUID {
        None
    } else {
        Some(dp)
    }
}

/// Get the vapor pressure over ice.
///
/// Alduchov, O.A., and Eskridge, R.E. Improved Magnus` form approximation of saturation vapor
/// pressure. United States: N. p., 1997. Web. doi:10.2172/548871.
///
/// Returns: The vapor pressure of water vapor.
#[inline]
pub fn vapor_pressure_ice<T>(frost_point: T) -> Option<HectoPascal>
where
    T: Temperature + PartialOrd,
    Celsius: From<T>,
{
    debug_validate!(frost_point);

    let Celsius(fp) = Celsius::from(frost_point);
    // should not need unpack calls below, should be able to do this as temperatures but compiler
    // can't handle the type inference, even with help. rustc --version = 1.30.1
    if fp < MIN_T_VP_ICE.unpack() || fp > MAX_T_VP_ICE.unpack() {
        None
    } else {
        let vp = 6.1121 * f64::exp(22.587 * fp / (fp + 273.86));
        let vp = HectoPascal(vp);

        debug_validate!(vp);

        Some(vp)
    }
}

/// Get the frost point given the vapor pressure of water over ice. This function is the inverse of
/// `vapor_pressure_ice`.
///
/// Returns: The frost point.
#[inline]
pub fn frost_point_from_vapor_pressure_over_ice<P>(vp: P) -> Option<Celsius>
where
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(vp);

    let HectoPascal(vp) = HectoPascal::from(vp);

    let a = f64::ln(vp / 6.1121) / 22.587;
    let fp = a * 273.86 / (1.0 - a);
    let fp = Celsius(fp);

    debug_validate!(fp);

    if fp < MIN_T_VP_ICE || fp > MAX_T_VP_ICE {
        None
    } else {
        Some(fp)
    }
}

/// Calculate the relative humidity with respect to liquid water.
///
/// Returns: The relative humidity as a decimal, i.e. 0.95 instead of 95%.
#[inline]
pub fn rh<T1, T2>(temperature: T1, dew_point: T2) -> Option<f64>
where
    T1: Temperature,
    T2: Temperature,
    Celsius: From<T1> + From<T2>,
{
    debug_validate!(temperature, dew_point);

    let t = Celsius::from(temperature);
    let dp = Celsius::from(dew_point);

    let (HectoPascal(es), HectoPascal(e)) = (
        vapor_pressure_liquid_water(t)?,
        vapor_pressure_liquid_water(dp)?,
    );

    let rh_val = e / es;

    debug_assert!(rh_val >= 0.0);

    // Allow e > es for supersaturation.
    Some(rh_val)
}

/// Calculate the relative humidity with respect to ice.
///
/// Returns: The relative humidity as a decimal, i.e. 0.95 instead of 95%.
#[inline]
pub fn rh_ice<T1, T2>(temperature: T1, frost_point: T2) -> Option<f64>
where
    T1: Temperature,
    T2: Temperature,
    Celsius: From<T1> + From<T2>,
{
    debug_validate!(temperature, frost_point);

    let t = Celsius::from(temperature);
    let fp = Celsius::from(frost_point);

    let (HectoPascal(es), HectoPascal(e)) = (
        vapor_pressure_liquid_water(t)?,
        vapor_pressure_liquid_water(fp)?,
    );

    let rh_val = e / es;

    debug_assert!(rh_val >= 0.0);

    // Allow e > es for supersaturation.
    Some(rh_val)
}

/// Calculate the mixing ratio of water.
///
/// Eq 5.9 from "Weather Analysis" by Dus&#780;an Dujric&#769;
///
/// Returns: The mixing ratio as a unitless value. Note this is often reported as g/kg, but this
///          function returns kg/kg.
#[inline]
pub fn mixing_ratio<T, P>(dew_point: T, pressure: P) -> Option<f64>
where
    T: Temperature,
    Celsius: From<T>,
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(dew_point, pressure);

    let dp = Celsius::from(dew_point);
    let HectoPascal(p) = HectoPascal::from(pressure);

    let HectoPascal(vp) = vapor_pressure_liquid_water::<Celsius>(dp)?;
    if vp > p {
        None
    } else {
        Some(epsilon * vp / (p - vp))
    }
}

/// Given a mixing ratio and pressure, calculate the dew point temperature. If saturation is
/// assumed this is also the temperature.
///
/// Returns: The dew point.
#[inline]
pub fn dew_point_from_p_and_mw<P>(pressure: P, mw: f64) -> Option<Celsius>
where
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(pressure);
    debug_assert!(mw >= 0.0);

    let HectoPascal(p) = HectoPascal::from(pressure);

    let vp = HectoPascal(mw * p / (mw + epsilon));
    dew_point_from_vapor_pressure_over_liquid::<HectoPascal>(vp)
}

/// Calculate the temperature and pressure at the lifting condensation level (LCL).
///
/// Eqs 5.17 and 5.18 from "Weather Analysis" by Dus&#780;an Dujric&#769;
///
/// * `temperature` - the initial temperature.
/// * `dew_point` - the initial dew point.
/// * `pressure` - the initial pressure of the parcel.
///
/// Returns: The pressure and the temperature at the LCL.
#[inline]
pub fn pressure_and_temperature_at_lcl<T, DP, P>(
    temperature: T,
    dew_point: DP,
    pressure: P,
) -> Option<(HectoPascal, Kelvin)>
where
    T: Temperature,
    DP: Temperature,
    Celsius: From<T> + From<DP>,
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(temperature, dew_point, pressure);

    let t = Celsius::from(temperature);
    let dp = Celsius::from(dew_point);
    let p = HectoPascal::from(pressure);

    let plcl = pressure_hpa_at_lcl::<Celsius, Celsius, HectoPascal>(t, dp, p)?;
    let tlcl =
        temperature_from_theta::<HectoPascal, Kelvin>(theta::<HectoPascal, Celsius>(p, t), plcl);

    debug_validate!(plcl, tlcl);

    Some((plcl, tlcl))
}

/// Approximate pressure of the Lifting Condensation Level (LCL).
///
/// * `temperature` - the initial temperature.
/// * `dew_point` - the initial dew point.
/// * `pressure` - the initial pressure.
///
/// Returns: The pressure at the LCL.
#[inline]
pub fn pressure_hpa_at_lcl<T, DP, P>(
    temperature: T,
    dew_point: DP,
    pressure: P,
) -> Option<HectoPascal>
where
    T: Temperature,
    DP: Temperature,
    Celsius: From<T> + From<DP>,
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(temperature, dew_point, pressure);

    let t = Celsius::from(temperature);
    let dp = Celsius::from(dew_point);
    let p = HectoPascal::from(pressure);

    if dp >= t {
        Some(p)
    } else {
        let theta = theta::<HectoPascal, Celsius>(p, t);
        let mw = mixing_ratio::<Celsius, HectoPascal>(dp, p)?;
        let theta_e = theta_e::<_, _, HectoPascal>(t, dp, p)?;

        let eq = |p: f64| -> Option<f64> {
            let p = HectoPascal(p);
            let Kelvin(t) = temperature_from_theta::<HectoPascal, Kelvin>(theta, p);
            let Kelvin(dp) = Kelvin::from(dew_point_from_p_and_mw::<HectoPascal>(p, mw)?);

            Some(t - dp)
        };

        // Search between 1060 and 300 hPa. If it falls outside that range, give up!
        let first_guess = find_root(&eq, 300.0, 1060.0)?;

        let eq = |p: f64| -> Option<f64> {
            let p = HectoPascal(p);
            let Kelvin(t1) = temperature_from_theta::<HectoPascal, Kelvin>(theta, p);
            let Kelvin(t2) = Kelvin::from(temperature_from_theta_e_saturated_and_pressure::<
                HectoPascal,
                Kelvin,
            >(p, theta_e)?);

            Some(t1 - t2)
        };

        const DELTA: f64 = 10.0;
        let lclp = if let Some(lcl) = find_root(&eq, first_guess + DELTA, first_guess - DELTA) {
            lcl
        } else {
            first_guess
        };

        let lclp = HectoPascal(lclp);

        debug_validate!(lclp);

        Some(lclp)
    }
}

/// Calculate the specific humidity.
///
/// Eqs 5.11 and 5.12 from "Weather Analysis" by Dus&#780;an Dujric&#769;
///
/// * `dew_point` - the dew point, if this is the same as the temperature then this
///                 calculates the saturation specific humidity.
/// * `pressure` - the pressure in hPa.
///
/// Returns the specific humidity. (no units)
#[inline]
pub fn specific_humidity<DP, P>(dew_point: DP, pressure: P) -> Option<f64>
where
    DP: Temperature,
    P: Pressure,
    Celsius: From<DP>,
    HectoPascal: From<P>,
{
    debug_validate!(dew_point, pressure);

    let dp = Celsius::from(dew_point);
    let p = HectoPascal::from(pressure).into_option()?;
    let HectoPascal(vp) = vapor_pressure_liquid_water::<Celsius>(dp)?;

    if vp > p {
        None
    } else {
        Some(vp / p * epsilon)
    }
}

/// Calculate equivalent potential temperature.
///
/// Equation from ["The Glossary of Meteorology"]
/// (http://glossary.ametsoc.org/wiki/Equivalent_potential_temperature) online where the
/// approximation of ignoring the "total water mixing ratio" is used since most of the time we do
/// not have the necessary information to calculate that.
///
/// * `temperature` - the initial temperature.
/// * `dew_point` - the initial dew point.
/// * `pressure` - the initial pressure.
///
/// Returns: The equivalent potential temperature.
#[inline]
pub fn theta_e<T, DP, P>(temperature: T, dew_point: DP, pressure: P) -> Option<Kelvin>
where
    T: Temperature,
    DP: Temperature,
    P: Pressure,
    Celsius: From<T> + From<DP>,
    HectoPascal: From<P>,
{
    debug_validate!(temperature, dew_point, pressure);

    let t = Celsius::from(temperature);
    let Kelvin(naked_tk) = Kelvin::from(t);
    let dp = Celsius::from(dew_point);
    let p = HectoPascal::from(pressure);
    let HectoPascal(naked_p) = p;

    const P0: f64 = 1000.0; // Reference pressure for potential temperatures.
    let rv = mixing_ratio::<Celsius, HectoPascal>(dp, p)?;
    let pd = naked_p - vapor_pressure_liquid_water::<Celsius>(dp)?.into_option()?;

    if pd < 0.0 {
        return None;
    }

    let h = rh(t, dp)?;

    let JpKg(lv) = latent_heat_of_condensation(t)?;

    let theta_e_val = Kelvin(
        naked_tk
            * f64::powf(P0 / pd, Rd / cp)
            * f64::powf(h, -rv * (Rv / cp))
            * f64::exp(lv * rv / cp.unpack() / naked_tk),
    );

    debug_validate!(theta_e_val);

    Some(theta_e_val)
}

/// Given the pressure and equivalent potential temperature, assume saturation and calculate the
/// temperature.
///
/// This function is useful if you were trying to calculate the temperature for plotting a
/// moist adiabat on a skew-t log-p diagram.
///
/// Returns: The temperature.
#[inline]
pub fn temperature_from_theta_e_saturated_and_pressure<P, T>(
    pressure: P,
    theta_e_val: T,
) -> Option<Celsius>
where
    P: Pressure,
    HectoPascal: From<P>,
    T: Temperature,
    Kelvin: From<T>,
{
    debug_validate!(pressure, theta_e_val);

    let p = HectoPascal::from(pressure);
    let Kelvin(theta_e_k) = Kelvin::from(theta_e_val);

    find_root(
        &|t_c| {
            let t = Celsius(t_c);
            let Kelvin(theta_e_calc) = theta_e::<Celsius, Celsius, HectoPascal>(t, t, p)?;
            Some(theta_e_calc - theta_e_k)
        },
        -80.0,
        50.0,
    )
    .map(Celsius)
}

/// Calculate the web bulb temperature.
///
/// Returns: The wet bulb temperature.
#[inline]
pub fn wet_bulb<T, DP, P>(temperature: T, dew_point: DP, pressure: P) -> Option<Celsius>
where
    T: Temperature,
    DP: Temperature,
    Celsius: From<T> + From<DP>,
    P: Pressure,
    HectoPascal: From<P>,
{
    debug_validate!(temperature, dew_point, pressure);

    let t = Celsius::from(temperature);
    let dp = Celsius::from(dew_point);
    let p = HectoPascal::from(pressure);

    let Celsius(temperature_c) = t;
    let Celsius(dew_point_c) = dp;

    let (p_lcl, t_lcl) = pressure_and_temperature_at_lcl::<_, _, HectoPascal>(t, dp, p)?;

    let Kelvin(theta_e_val) = theta_e::<_, _, HectoPascal>(t_lcl, t_lcl, p_lcl)?;

    find_root(
        &|t_c| {
            let t_c = Celsius(t_c);
            let Kelvin(theta_e_calc) = theta_e::<_, _, HectoPascal>(t_c, t_c, p)?;

            Some(theta_e_calc - theta_e_val)
        },
        dew_point_c,
        temperature_c,
    )
    .map(Celsius)
}

/// Latent heat of condensation for water.
///
/// Polynomial curve fit to Table 2.1. R. R. Rogers; M. K. Yau (1989). A Short Course in Cloud
/// Physics (3rd ed.). Pergamon Press. p. 16. ISBN 0-7506-3215-1.
///
/// Returns: the latent heat of condensation for water in J kg<sup>-1</sup>.
#[inline]
pub fn latent_heat_of_condensation<T>(temperature: T) -> Option<JpKg>
where
    T: Temperature,
    Celsius: From<T>,
{
    debug_validate!(temperature);

    let Celsius(t) = Celsius::from(temperature);

    // The table has values from -40.0 to 40.0. So from -100.0 to -40.0 is actually an exrapolation.
    // I graphed the values from the extrapolation, and the curve looks good, and is approaching the
    // latent heat of sublimation, but does not exceed it. This seems very reasonable to me,
    // especially considering that a common approximation is to just us a constant value.
    if t < -100.0 || t > 60.0 {
        None
    } else {
        Some(JpKg(
            (2500.8 - 2.36 * t + 0.0016 * t * t - 0.00006 * t * t * t) * 1000.0,
        ))
    }
}

/// Virtual temperature.
///
/// From the [Glossary of Meteorology].(http://glossary.ametsoc.org/wiki/Virtual_temperature)
///
/// Returns the virtual temperature.
#[inline]
pub fn virtual_temperature<T, DP, P>(temperature: T, dew_point: DP, pressure: P) -> Option<Kelvin>
where
    T: Temperature,
    DP: Temperature,
    P: Pressure,
    Celsius: From<T> + From<DP>,
    HectoPascal: From<P>,
{
    debug_validate!(temperature, dew_point, pressure);

    let t = Celsius::from(temperature);
    let dp = Celsius::from(dew_point);
    let p = HectoPascal::from(pressure);

    let rv = mixing_ratio::<Celsius, HectoPascal>(dp, p)?;
    let Kelvin(t_k) = theta::<HectoPascal, Celsius>(p, t);
    let vt_k = Kelvin(t_k * (1.0 + rv / epsilon) / (1.0 + rv));
    Some(temperature_from_theta::<HectoPascal, _>(vt_k, p))
}

/// Bisection algorithm for finding the root of an equation given values bracketing a root. Used
/// when finding wet bulb temperature.
// FIXME: Update to use Brent's method.
fn find_root(f: &dyn Fn(f64) -> Option<f64>, mut low_val: f64, mut high_val: f64) -> Option<f64> {
    use std::f64;
    const MAX_IT: usize = 50;
    const EPS: f64 = 1.0e-10;

    if low_val > high_val {
        ::std::mem::swap(&mut low_val, &mut high_val);
    }

    let mut f_low = f(low_val)?;
    let f_high = f(high_val)?;

    // Check to make sure we have bracketed a root.
    if f_high * f_low > 0.0 {
        return None;
    }

    let mut mid_val = (high_val - low_val) / 2.0 + low_val;
    let mut f_mid = f(mid_val)?;
    for _ in 0..MAX_IT {
        if f_mid * f_low > 0.0 {
            low_val = mid_val;
            f_low = f_mid;
        } else {
            high_val = mid_val;
        }

        if (high_val - low_val).abs() < EPS {
            break;
        }

        mid_val = (high_val - low_val) / 2.0 + low_val;
        f_mid = f(mid_val)?;
    }

    Some(mid_val)
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::test_utils::{approx_equal, approx_lte, pressure_levels, temperatures};

    const TOL: f64 = 1.0e-9;

    #[test]
    fn test_theta_kelvin() {
        for celsius in temperatures() {
            let kelvin = Kelvin::from(celsius);
            let theta = theta(HectoPascal(1000.0), celsius);
            assert!(approx_equal(kelvin, theta, CelsiusDiff(TOL)));
        }
    }

    #[test]
    fn test_temperature_c_from_theta() {
        for celsius in temperatures() {
            let kelvin = Kelvin::from(celsius);
            let back_to_celsius = temperature_from_theta(kelvin, HectoPascal(1000.0));

            assert!(approx_equal(celsius, back_to_celsius, CelsiusDiff(TOL)));
        }
    }

    #[test]
    fn test_temperature_c_from_theta_and_back_by_theta_kelvin() {
        for p in pressure_levels() {
            for celsius in temperatures() {
                let theta = theta(p, celsius);
                let back_to_celsius = Celsius::from(temperature_from_theta(theta, p));
                assert!(approx_equal(celsius, back_to_celsius, CelsiusDiff(TOL)));
            }
        }
    }

    #[test]
    fn test_vapor_pressure_liquid_water_there_and_back() {
        for dp in [
            -80.0, -60.0, -40.0, -20.0, -10.0, 0.0, 10.0, 20.0, 40.0, 49.0,
        ]
        .iter()
        .map(|&dp| Celsius(dp))
        {
            let forward = vapor_pressure_liquid_water(dp).unwrap();
            let back = dew_point_from_vapor_pressure_over_liquid(forward).unwrap();
            assert!(approx_equal(dp, back, CelsiusDiff(TOL)));
        }
    }

    #[test]
    fn test_vapor_pressure_ice_there_and_back() {
        for dp in [-80.0, -60.0, -40.0, -20.0, -10.0, -5.0, 0.0]
            .iter()
            .map(|&dp| Celsius(dp))
        {
            let forward = vapor_pressure_ice(dp).unwrap();
            let back = frost_point_from_vapor_pressure_over_ice(forward).unwrap();
            assert!(approx_equal(dp, back, CelsiusDiff(TOL)));
        }
    }

    #[test]
    fn test_rh() {
        for t in temperatures() {
            for dp in temperatures().filter(|dp| *dp <= t) {
                if let Some(rh_result) = rh(t, dp) {
                    assert!(rh_result > 0.0, "Negative RH!");
                    assert!(rh_result <= 1.0);
                    if t == dp {
                        assert!(rh_result == 1.0);
                    }
                }
            }
        }
    }

    #[test]
    fn test_rh_ice() {
        for t in temperatures() {
            for dp in temperatures().filter(|dp| *dp <= t) {
                if let Some(rh_result) = rh_ice(t, dp) {
                    assert!(rh_result > 0.0, "Negative RH!");
                    assert!(rh_result <= 1.0);
                    if t == dp {
                        assert!(rh_result == 1.0);
                    }
                }
            }
        }
    }

    #[test]
    fn test_mixing_ratio() {
        for p in pressure_levels() {
            for dp in temperatures() {
                if let Some(vp) = vapor_pressure_liquid_water(dp) {
                    if vp >= p {
                        continue;
                    }

                    let mw = mixing_ratio(dp, p).unwrap();
                    assert!(mw > 0.0);
                }
            }
        }
    }

    #[test]
    fn test_mixing_ratio_and_back_by_dew_point_from_p_and_mw() {
        for press in pressure_levels() {
            for dp in temperatures() {
                let mw = mixing_ratio(dp, press);

                match mw {
                    Some(mw) => {
                        if let Some(back) = dew_point_from_p_and_mw(press, mw) {
                            println!(
                                "{:?} == {:?} with tolerance <= {:?}",
                                dp,
                                back,
                                f64::abs(dp.unwrap() - back.unwrap())
                            );
                            assert!(approx_equal(dp, back, CelsiusDiff(1.0e-2)));
                        }
                    }
                    None => { /* Ignore this for now.*/ }
                }
            }
        }
    }

    #[test]
    fn test_pressure_and_temperature_at_lcl() {
        for p in pressure_levels() {
            for t in temperatures() {
                for dp in temperatures().filter(|dp| *dp <= t) {
                    match pressure_and_temperature_at_lcl(t, dp, p) {
                        Some((p_lcl, t_lcl)) => {
                            let k = Kelvin::from(t);
                            assert!(p_lcl <= p);
                            if t == dp {
                                assert!(approx_equal(t_lcl, k, CelsiusDiff(0.001)));
                            }

                            // Check for valid values
                            p_lcl.unwrap();
                            t_lcl.unwrap();
                        }
                        None => { /* Ignore these for now. */ }
                    }
                }
            }
        }
    }

    #[test]
    fn test_pressure_hpa_at_lcl() {
        for p in pressure_levels() {
            for t in temperatures() {
                for dp in temperatures().filter(|dp| *dp <= t) {
                    match pressure_hpa_at_lcl(t, dp, p) {
                        Some(p_lcl) => {
                            assert!(p_lcl <= p);
                            p_lcl.unwrap();
                        }
                        None => { /* Ignore */ }
                    }
                }
            }
        }
    }

    #[test]
    fn test_specific_humidity() {
        for p in pressure_levels() {
            for dp in temperatures() {
                if let Some(sh) = specific_humidity(dp, p) {
                    assert!(sh > 0.0 && sh <= 1.0);
                }
            }
        }
    }

    #[test]
    fn test_theta_e() {
        for p in pressure_levels() {
            for t in temperatures() {
                for dp in temperatures() {
                    match theta_e(t, dp, p) {
                        Some(theta_e) => {
                            let theta = theta(p, t);
                            assert!(theta <= theta_e);
                        }
                        None => { /* Ignore forwarded errors. */ }
                    }
                }
            }
        }
    }

    #[test]
    fn test_theta_e_saturated_theta_e_theta_relationships() {
        for p in pressure_levels() {
            for t in temperatures() {
                for dp in temperatures().filter(|dp| *dp <= t) {
                    if let Some((theta, theta_e, theta_es)) = theta_e(t, dp, p)
                        .and_then(|theta_e_val| Some((theta_e_val, theta_e(t, t, p)?)))
                        .and_then(|pair| Some((theta(p, t), pair.0, pair.1)))
                    {
                        println!("{:?} <= {:?} <= {:?}", theta, theta_e, theta_es);
                        assert!(
                            approx_lte(theta, theta_e, CelsiusDiff(TOL))
                                && approx_lte(theta_e, theta_es, CelsiusDiff(TOL))
                        );
                    }
                }
            }
        }
    }

    #[test]
    fn test_theta_e_saturated_there_and_back() {
        for p in pressure_levels() {
            for t in temperatures() {
                if let Some(t_back) = theta_e(t, t, p).and_then(|theta_es| {
                    temperature_from_theta_e_saturated_and_pressure(p, theta_es)
                }) {
                    println!(
                        "{:?} {:?} {:?}",
                        t,
                        t_back,
                        (t.unwrap() - t_back.unwrap()).abs()
                    );
                    assert!(approx_equal(t, t_back, CelsiusDiff(1.0e-7)));
                }
            }
        }
    }

    #[test]
    fn test_wet_bulb_dp_temp_consistency() {
        for press in [1000.0, 906.4, 850.0, 700.0, 314.6]
            .iter()
            .map(|&p| HectoPascal(p))
        {
            for t in [-45.46, -20.0, -10.0, -5.0, -1.46, 0.0, 5.0, 10.0, 20.0]
                .iter()
                .map(|&t| Celsius(t))
            {
                for dp in [-59.49, -21.0, -11.0, -5.1, -3.06, 0.0, 4.9, 9.9, 20.0]
                    .iter()
                    .map(|&t| Celsius(t))
                {
                    if dp > t {
                        continue;
                    }
                    if let Some(wb) = wet_bulb(t, dp, press) {
                        assert!(dp <= wb);
                        assert!(wb <= t);
                        assert!(dp <= t);
                    }
                }
            }
        }
    }

    #[test]
    fn test_virtual_temperature_c() {
        let t_c = [0.0, 10.0, 20.0, 25.0, 30.0].iter().map(|&t| Celsius(t));
        let dp_c = [-15.0, -15.0, 18.0, 19.0, 19.0].iter().map(|&t| Celsius(t));
        let p_hpa = [1000.0, 1000.0, 900.0, 875.0, 875.0]
            .iter()
            .map(|&p| HectoPascal(p));
        let vt = [0.2, 10.21, 22.57, 27.86, 32.91]
            .iter()
            .map(|&t| Celsius(t));

        for (t, (dp, (p, target))) in t_c.zip(dp_c.zip(p_hpa.zip(vt))) {
            println!(
                "target = {:?}, value = {:?}",
                target,
                virtual_temperature(t, dp, p).unwrap()
            );
            assert!(approx_equal(
                target,
                virtual_temperature(t, dp, p).unwrap(),
                CelsiusDiff(0.05)
            ));
        }
    }

    #[test]
    fn test_find_root() {
        assert!(approx_equal(
            1.0,
            find_root(&|x| Some(x * x - 1.0), 2.0, 0.0).unwrap(),
            1.0e-10
        ));
        assert!(approx_equal(
            -1.0,
            find_root(&|x| Some(x * x - 1.0), -2.0, 0.0).unwrap(),
            1.0e-10
        ));
    }

}