1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
//!
//! Extended uniform poly meshes. This module defines an extension of uniform polygon meshes like
//! TriMesh and QuadMesh that are accompanied by their own dual topologies.
//!

use super::{QuadMesh, TriMesh};

use crate::attrib::*;
use crate::mesh::topology::*;
use crate::mesh::vertex_positions::VertexPositions;
use crate::prim::Triangle;
use crate::Real;
use std::slice::{Iter, IterMut};

/*
 * Commonly used meshes and their implementations.
 */

// Implement indexing for the Vec types used in meshes.
// The macro `impl_index_for` is defined in the `index` module.
impl_index_for!(Vec<usize> by FaceEdgeIndex, FaceVertexIndex, VertexCellIndex, VertexFaceIndex);

macro_rules! impl_uniform_surface_mesh {
    ($mesh_type:ident, $base_type:ident, $verts_per_face:expr) => {
        impl<T: Real> $mesh_type<T> {
            pub fn new(verts: Vec<[T; 3]>, indices: Vec<[usize; $verts_per_face]>) -> $mesh_type<T> {
                let (face_indices, face_offsets) = Self::compute_dual_topology(verts.len(), &indices);
                $mesh_type {
                    base_mesh: $base_type::new(verts, indices),
                    face_indices,
                    face_offsets,
                }
            }

            /// Compute the `face_indices` and `face_offsets` fields of this uniform mesh.
            pub(crate) fn compute_dual_topology(
                num_verts: usize,
                indices: &[[usize; $verts_per_face]],
            ) -> (Vec<usize>, Vec<usize>) {
                let mut face_indices = Vec::new();
                face_indices.resize(num_verts, Vec::new());
                for (fidx, face) in indices.iter().enumerate() {
                    for &vidx in face {
                        face_indices[vidx].push(fidx);
                    }
                }

                let mut face_offsets = Vec::with_capacity(indices.len());
                face_offsets.push(0);
                for neighbours in face_indices.iter() {
                    let last = *face_offsets.last().unwrap();
                    face_offsets.push(last + neighbours.len());
                }

                (
                    face_indices
                        .iter()
                        .flat_map(|x| x.iter().cloned())
                        .collect(),
                    face_offsets,
                )
            }

            /// Iterate over each face.
            pub fn face_iter(&self) -> Iter<[usize; $verts_per_face]> {
                self.base_mesh.face_iter()
            }

            /// Iterate mutably over each face.
            pub fn face_iter_mut(&mut self) -> IterMut<[usize; $verts_per_face]> {
                self.base_mesh.face_iter_mut()
            }

            /// Face accessor. These are vertex indices.
            #[inline]
            pub fn face(&self, fidx: FaceIndex) -> &[usize; $verts_per_face] {
                self.base_mesh.face(fidx)
            }

            /// Return a slice of individual faces.
            #[inline]
            pub fn faces(&self) -> &[[usize; $verts_per_face]] {
                self.base_mesh.faces()
            }

            /// Reverse the order of each polygon in this mesh.
            #[inline]
            pub fn reverse(&mut self) {
                self.base_mesh.reverse()
            }

            /// Reverse the order of each polygon in this mesh. This is the consuming version of the
            /// `reverse` method.
            #[inline]
            pub fn reversed(mut self) -> Self {
                self.reverse();
                self
            }

            /// Sort vertices by the given key values.
            pub fn sort_vertices_by_key<K, F>(&mut self, f: F)
            where
                F: FnMut(usize) -> K,
                K: Ord,
            {
                // Ensure we have at least one vertex.
                if self.num_vertices() == 0 {
                    return;
                }

                let $mesh_type {
                    ref mut base_mesh,
                    ref mut face_indices,
                    ref mut face_offsets,
                    .. // face and face_{vertex,edge} attributes are unchanged
                } = *self;

                let order = base_mesh.sort_vertices_by_key(f);

                // Can't easily do this in place, so just for simplicity's sake we use extra memory
                // for transferring dual topology.

                let orig_face_indices = face_indices.clone();
                let orig_face_offsets = face_offsets.clone();

                // Note: The first and last offsets don't change.
                let mut prev_off = 0;
                for (idx, off) in face_offsets.iter_mut().skip(1).enumerate() {
                    let orig_idx = order[idx];
                    let prev_orig_off = orig_face_offsets[orig_idx];
                    let orig_off = orig_face_offsets[orig_idx + 1];
                    for (idx, &orig_idx) in face_indices[prev_off..]
                        .iter_mut()
                        .zip(orig_face_indices[prev_orig_off..orig_off].iter())
                    {
                        *idx = orig_idx;
                    }
                    *off = prev_off + orig_off - prev_orig_off;
                    prev_off = *off;
                }
            }
        }

        impl<T: Real> NumVertices for $mesh_type<T> {
            fn num_vertices(&self) -> usize {
                self.base_mesh.num_vertices()
            }
        }

        impl<T: Real> NumFaces for $mesh_type<T> {
            fn num_faces(&self) -> usize {
                self.base_mesh.num_faces()
            }
        }

        impl<T: Real> FaceVertex for $mesh_type<T> {
            #[inline]
            fn vertex<FVI>(&self, fv_idx: FVI) -> VertexIndex
            where
                FVI: Copy + Into<FaceVertexIndex>,
            {
                self.base_mesh.vertex(fv_idx)
            }

            #[inline]
            fn face_vertex<FI>(&self, fidx: FI, which: usize) -> Option<FaceVertexIndex>
            where
                FI: Copy + Into<FaceIndex>,
            {
                self.base_mesh.face_vertex(fidx.into(), which)
            }

            #[inline]
            fn num_face_vertices(&self) -> usize {
                self.base_mesh.num_face_vertices()
            }

            #[inline]
            fn num_vertices_at_face<FI>(&self, fidx: FI) -> usize
            where
                FI: Copy + Into<FaceIndex>,
            {
                self.base_mesh.num_vertices_at_face(fidx.into())
            }
        }

        impl<T: Real> FaceEdge for $mesh_type<T> {
            #[inline]
            fn edge<FEI>(&self, fe_idx: FEI) -> EdgeIndex
            where
                FEI: Copy + Into<FaceEdgeIndex>,
            {
                self.base_mesh.edge(fe_idx)
            }
            #[inline]
            fn face_edge<FI>(&self, fidx: FI, which: usize) -> Option<FaceEdgeIndex>
            where
                FI: Copy + Into<FaceIndex>,
            {
                self.base_mesh.face_edge(fidx.into(), which)
            }
            #[inline]
            fn num_face_edges(&self) -> usize {
                self.base_mesh.num_face_edges()
            }
            #[inline]
            fn num_edges_at_face<FI>(&self, fidx: FI) -> usize
            where
                FI: Copy + Into<FaceIndex>,
            {
                self.base_mesh.num_edges_at_face(fidx.into())
            }
        }

        impl<T: Real> VertexFace for $mesh_type<T> {
            #[inline]
            fn face<VFI>(&self, vf_idx: VFI) -> FaceIndex
            where
                VFI: Copy + Into<VertexFaceIndex>,
            {
                let vf_idx = usize::from(vf_idx.into());
                debug_assert!(vf_idx < self.num_vertex_faces());
                self.face_indices[vf_idx].into()
            }

            #[inline]
            fn vertex_face<VI>(&self, vidx: VI, which: usize) -> Option<VertexFaceIndex>
            where
                VI: Copy + Into<VertexIndex>,
            {
                if which >= self.num_faces_at_vertex(vidx) {
                    return None;
                }

                let vidx = usize::from(vidx.into());
                debug_assert!(vidx < self.num_vertices());

                Some((self.face_offsets[vidx] + which).into())
            }

            #[inline]
            fn num_vertex_faces(&self) -> usize {
                self.face_indices.len()
            }

            #[inline]
            fn num_faces_at_vertex<VI>(&self, vidx: VI) -> usize
            where
                VI: Copy + Into<VertexIndex>,
            {
                let vidx = usize::from(vidx.into());
                self.face_offsets[vidx + 1] - self.face_offsets[vidx]
            }
        }

        impl<T: Real> Default for $mesh_type<T> {
            /// Produce an empty mesh. This is not particularly useful on its own, however it can be
            /// used as a null case for various mesh algorithms.
            fn default() -> Self {
                $mesh_type::new(vec![], vec![])
            }
        }
    };
}

#[derive(Clone, Debug, PartialEq, Attrib, Intrinsic)]
pub struct TriMeshExt<T: Real> {
    /// Vertex positions.
    #[attributes(Vertex, Face, FaceVertex, FaceEdge)]
    #[intrinsics(VertexPositions::vertex_positions)]
    pub base_mesh: TriMesh<T>,
    /// Lists of face indices for each vertex. Since each vertex can have a variable number of face
    /// neighbours, the `face_offsets` field keeps track of where each subarray of indices begins.
    pub face_indices: Vec<usize>,
    /// Offsets into the `face_indices` array, one for each vertex. The last offset is always
    /// equal to the size of `face_indices` for convenience.
    pub face_offsets: Vec<usize>,
}

#[derive(Clone, Debug, PartialEq, Attrib, Intrinsic)]
pub struct QuadMeshExt<T: Real> {
    /// Vertex positions.
    #[attributes(Vertex, Face, FaceVertex, FaceEdge)]
    #[intrinsics(VertexPositions::vertex_positions)]
    pub base_mesh: QuadMesh<T>,
    /// Lists of face indices for each vertex. Since each vertex can have a variable number of face
    /// neighbours, the `face_offsets` field keeps track of where each subarray of indices begins.
    pub face_indices: Vec<usize>,
    /// Offsets into the `face_indices` array, one for each vertex. The last offset is always
    /// equal to the size of `face_indices` for convenience.
    pub face_offsets: Vec<usize>,
}

impl_uniform_surface_mesh!(TriMeshExt, TriMesh, 3);
impl_uniform_surface_mesh!(QuadMeshExt, QuadMesh, 4);

impl<T: Real> TriMeshExt<T> {
    /// Triangle iterator.
    ///
    /// ```
    /// use meshx::mesh::TriMeshExt;
    /// use meshx::prim::Triangle;
    ///
    /// let verts = vec![[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]];
    /// let mesh = TriMeshExt::new(verts.clone(), vec![[0, 1, 2]]);
    /// let tri = Triangle::from_indexed_slice(&[0, 1, 2], verts.as_slice());
    /// assert_eq!(Some(tri), mesh.tri_iter().next());
    /// ```
    #[inline]
    pub fn tri_iter(&self) -> impl Iterator<Item = Triangle<T>> + '_ {
        self.base_mesh.tri_iter()
    }

    /// Get a tetrahedron primitive corresponding to the given vertex indices.
    #[inline]
    pub fn tri_from_indices(&self, indices: &[usize; 3]) -> Triangle<T> {
        self.base_mesh.tri_from_indices(indices)
    }
}

/// Convert a triangle mesh to a polygon mesh.
// TODO: Improve this algorithm with ear clipping:
// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
impl<T: Real> From<super::PolyMesh<T>> for TriMeshExt<T> {
    fn from(mesh: super::PolyMesh<T>) -> TriMeshExt<T> {
        let base_mesh = TriMesh::from(mesh);

        let (face_indices, face_offsets) = TriMeshExt::<T>::compute_dual_topology(
            base_mesh.vertex_positions.len(),
            base_mesh.indices.as_slice(),
        );

        TriMeshExt {
            base_mesh,
            face_indices,
            face_offsets,
        }
    }
}

macro_rules! impl_mesh_convert {
    ($ext_mesh:ident <-> $base_mesh:ident) => {
        impl<T: Real> From<$base_mesh<T>> for $ext_mesh<T> {
            fn from(base_mesh: $base_mesh<T>) -> $ext_mesh<T> {
                // TODO: Refactor unnecessary unsafe block
                let flat_indices = bytemuck::cast_slice(base_mesh.indices.as_slice());
                let (face_indices, face_offsets) =
                    Self::compute_dual_topology(base_mesh.vertex_positions.len(), flat_indices);

                $ext_mesh {
                    base_mesh,
                    face_indices,
                    face_offsets,
                }
            }
        }

        impl<T: Real> From<$ext_mesh<T>> for $base_mesh<T> {
            fn from(ext: $ext_mesh<T>) -> $base_mesh<T> {
                ext.base_mesh
            }
        }
    };
}

impl_mesh_convert!(TriMeshExt <-> TriMesh);
impl_mesh_convert!(QuadMeshExt <-> QuadMesh);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::index::Index;

    #[test]
    fn mesh_sort() {
        // Sort -> check for inequality -> sort to original -> check for equality.

        let pts = vec![
            [0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [1.0, 1.0, 0.0],
            [1.0, 1.0, 1.0],
        ];
        let indices = vec![[0, 1, 2], [1, 3, 2], [0, 2, 4]];

        let mut trimesh = TriMeshExt::new(pts, indices);

        let orig_trimesh = trimesh.clone();

        let values = [3, 2, 1, 4, 0];
        trimesh.sort_vertices_by_key(|k| values[k]);

        assert_ne!(trimesh, orig_trimesh);

        let rev_values = [4, 2, 1, 0, 3];
        trimesh.sort_vertices_by_key(|k| rev_values[k]);

        assert_eq!(trimesh, orig_trimesh);

        // Verify exact values.
        trimesh
            .insert_attrib_data::<usize, VertexIndex>("i", vec![0, 1, 2, 3, 4])
            .unwrap();

        trimesh.sort_vertices_by_key(|k| values[k]);

        assert_eq!(
            trimesh.vertex_positions(),
            &[
                [1.0, 1.0, 1.0],
                [0.0, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [1.0, 1.0, 0.0],
            ]
        );

        // `rev_values` actually already corresponds to 0..=4 being sorted by `values`.
        assert_eq!(
            trimesh.attrib_as_slice::<usize, VertexIndex>("i").unwrap(),
            &rev_values[..]
        );
        assert_eq!(
            trimesh.base_mesh.indices.as_slice(),
            &[[3, 2, 1], [2, 4, 1], [3, 1, 0]]
        );
    }

    #[test]
    fn two_triangles_test() {
        let pts = vec![
            [0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [1.0, 1.0, 0.0],
        ];
        let indices = vec![[0, 1, 2], [1, 3, 2]];

        let trimesh = TriMeshExt::new(pts, indices);
        assert_eq!(trimesh.num_vertices(), 4);
        assert_eq!(trimesh.num_faces(), 2);
        assert_eq!(trimesh.num_face_vertices(), 6);
        assert_eq!(trimesh.num_face_edges(), 6);

        assert_eq!(Index::from(trimesh.face_to_vertex(1, 1)), 3);
        assert_eq!(Index::from(trimesh.face_to_vertex(0, 2)), 2);
        assert_eq!(Index::from(trimesh.face_edge(1, 0)), 3);

        let mut face_iter = trimesh.face_iter();
        assert_eq!(face_iter.next(), Some(&[0usize, 1, 2]));
        assert_eq!(face_iter.next(), Some(&[1usize, 3, 2]));

        // Verify dual topology
        let vertex_faces = vec![vec![0], vec![0, 1], vec![0, 1], vec![1]];
        for i in 0..vertex_faces.len() {
            assert_eq!(trimesh.num_faces_at_vertex(i), vertex_faces[i].len());
            let mut local_faces: Vec<usize> = (0..trimesh.num_faces_at_vertex(i))
                .map(|j| trimesh.vertex_to_face(i, j).unwrap().into())
                .collect();
            local_faces.sort();
            assert_eq!(local_faces, vertex_faces[i]);
        }
    }

    /// Test converting from a `PolyMesh` into a `TriMeshExt`, which is a non-trivial operation since
    /// it involves trianguating polygons.
    #[test]
    fn from_polymesh_test() {
        let points = vec![
            [0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [1.0, 1.0, 0.0],
            [0.0, 0.0, 1.0],
            [1.0, 0.0, 1.0],
        ];
        let faces = vec![
            3, 0, 1, 2, // first triangle
            4, 0, 1, 5, 4, // quadrilateral
            3, 1, 3, 2, // second triangle
        ];

        let polymesh = crate::mesh::PolyMesh::new(points.clone(), &faces);
        let trimesh = TriMeshExt::new(
            points.clone(),
            vec![[0, 1, 2], [0, 1, 5], [0, 5, 4], [1, 3, 2]],
        );
        assert_eq!(trimesh, TriMeshExt::from(polymesh));
    }
}