1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
//! ⚠️ This crate is still in its early stages. Expect the API to change.
//!
//! ---
//!
//! This crate provides two entry points:
//!
//! - [`generate_sdf`]: computes the signed distance field for the mesh defined by `vertices` and `indices` at the points `query_points`.
//! - [`generate_grid_sdf`]: computes the signed distance field for the mesh defined by `vertices` and `indices` on a [Grid].
//!
//! ```
//! use mesh_to_sdf::{generate_sdf, generate_grid_sdf, SignMethod, Topology, Grid};
//! // vertices are [f32; 3], but can be cgmath::Vector3<f32>, glam::Vec3, etc.
//! let vertices: Vec<[f32; 3]> = vec![[0.5, 1.5, 0.5], [1., 2., 3.], [1., 3., 7.]];
//! let indices: Vec<u32> = vec![0, 1, 2];
//!
//! // query points must be of the same type as vertices
//! let query_points: Vec<[f32; 3]> = vec![[0.5, 0.5, 0.5]];
//!
//! // Query points are expected to be in the same space as the mesh.
//! let sdf: Vec<f32> = generate_sdf(
//!     &vertices,
//!     Topology::TriangleList(Some(&indices)), // TriangleList as opposed to TriangleStrip
//!     &query_points,
//!     SignMethod::Raycast, // How the sign is computed.
//! );                       // Raycast is robust but requires the mesh to be watertight.
//!
//! for point in query_points.iter().zip(sdf.iter()) {
//!     // distance is positive outside the mesh and negative inside.
//!     println!("Distance to {:?}: {}", point.0, point.1);
//! }
//! # assert_eq!(sdf, vec![1.0]);
//!
//! // if you can, use generate_grid_sdf instead of generate_sdf as it's optimized and much faster.
//! let bounding_box_min = [0., 0., 0.];
//! let bounding_box_max = [10., 10., 10.];
//! let cell_count = [10, 10, 10];
//!
//! let grid = Grid::from_bounding_box(&bounding_box_min, &bounding_box_max, cell_count);
//!
//! let sdf: Vec<f32> = generate_grid_sdf(
//!     &vertices,
//!     Topology::TriangleList(Some(&indices)),
//!     &grid,
//!     SignMethod::Normal, // How the sign is computed.
//! );                      // Normal might leak negative distances outside the mesh
//!                         // but works for all meshes, even surfaces.
//!
//! for x in 0..cell_count[0] {
//!     for y in 0..cell_count[1] {
//!         for z in 0..cell_count[2] {
//!             let index = grid.get_cell_idx(&[x, y, z]);
//!             log::info!("Distance to cell [{}, {}, {}]: {}", x, y, z, sdf[index as usize]);
//!         }
//!     }
//! }
//! # assert_eq!(sdf[0], 1.0);
//! ```
//!
//! ---
//!
//! #### Mesh Topology
//!
//! Indices can be of any type that implements `Into<u32>`, e.g. `u16` and `u32`. Topology can be list or strip.
//! If the indices are not provided, they are supposed to be `0..vertices.len()`.
//!
//! For vertices, this library aims to be as generic as possible by providing a trait `Point` that can be implemented for any type.
//! Implementations for most common math libraries are gated behind feature flags. By default, only `[f32; 3]` is provided.
//! If you do not find your favorite library, feel free to implement the trait for it and submit a PR or open an issue.
//!
//! ---
//!
//! #### Computing sign
//!
//! This crate provides two methods to compute the sign of the distance:
//! - [`SignMethod::Raycast`] (default): a robust method to compute the sign of the distance. It counts the number of intersections between a ray starting from the query point and the triangles of the mesh.
//!     It only works for watertight meshes, but guarantees the sign is correct.
//! - [`SignMethod::Normal`]: uses the normals of the triangles to estimate the sign by doing a dot product with the direction of the query point.
//!     It works for non-watertight meshes but might leak negative distances outside the mesh.
//!
//! For grid generation, `Raycast` is ~1% slower.
//! For query points, `Raycast` is ~10% slower.
//! Note that it depends on the query points / grid size to triangle ratio, but this gives a rough idea.
//!
//! ---
//!
//! #### Using your favorite library
//!
//! To use your favorite math library with `mesh_to_sdf`, you need to add it to `mesh_to_sdf` dependency. For example, to use `glam`:
//! ```toml
//! [dependencies]
//! mesh_to_sdf = { version = "0.2.1", features = ["glam"] }
//! ```
//!
//! Currently, the following libraries are supported:
//! - [cgmath] ([`cgmath::Vector3<f32>`])
//! - [glam] ([`glam::Vec3`])
//! - [mint] ([`mint::Vector3<f32>`] and [`mint::Point3<f32>`])
//! - [nalgebra] ([`nalgebra::Vector3<f32>`] and [`nalgebra::Point3<f32>`])
//! - `[f32; 3]`
//!
//! ---
//!
//! #### Benchmarks
//!
//! [`generate_grid_sdf`] is much faster than [`generate_sdf`] and should be used whenever possible.
//! [`generate_sdf`] does not allocate memory (except for the result array) but is slow. A faster implementation is planned for the future.
//!
//! [`SignMethod::Raycast`] is slightly slower than [`SignMethod::Normal`] but is robust and should be used whenever possible (~1% in [`generate_grid_sdf`], ~10% in [`generate_sdf`]).
use std::boxed::Box;

use itertools::Itertools;
use ordered_float::NotNan;
use rayon::prelude::*;

mod geo;
mod grid;
mod point;

pub use grid::{Grid, SnapResult};
pub use point::Point;

/// Mesh Topology: how indices are stored.
pub enum Topology<'a, I>
where
    // I should be a u32 or u16
    I: Into<u32>,
{
    /// Vertex data is a list of triangles. Each set of 3 vertices composes a new triangle.
    ///
    /// Vertices `0 1 2 3 4 5` create two triangles `0 1 2` and `3 4 5`
    /// If no indices are provided, they are supposed to be `0..vertices.len()`
    TriangleList(Option<&'a [I]>),
    /// Vertex data is a triangle strip. Each set of three adjacent vertices form a triangle.
    ///
    /// Vertices `0 1 2 3 4 5` create four triangles `0 1 2`, `1 2 3`, `2 3 4`, and `3 4 5`
    /// If no indices are provided, they are supposed to be `0..vertices.len()`
    TriangleStrip(Option<&'a [I]>),
}

impl<'a, I> Topology<'a, I>
where
    I: Into<u32>,
{
    /// Compute the triangles list
    /// Returns an iterator of tuples of 3 indices representing a triangle.
    fn get_triangles<V>(
        vertices: &[V],
        indices: &'a Topology<I>,
    ) -> Box<dyn Iterator<Item = (usize, usize, usize)> + 'a>
    where
        V: Point,
        I: Copy + Into<u32> + Sync + Send,
    {
        match indices {
            Topology::TriangleList(Some(indices)) => {
                Box::new(indices.iter().map(|x| (*x).into() as usize).tuples())
            }
            Topology::TriangleList(None) => Box::new((0..vertices.len()).tuples()),
            Topology::TriangleStrip(Some(indices)) => {
                Box::new(indices.iter().map(|x| (*x).into() as usize).tuple_windows())
            }
            Topology::TriangleStrip(None) => Box::new((0..vertices.len()).tuple_windows()),
        }
    }
}

/// Method to compute the sign of the distance.
///
/// Raycast is the default method. It is robust but requires the mesh to be watertight.
///
/// Normal is not robust and might leak negative distances outside the mesh.
///
/// For grid generation, Raycast is ~1% slower.
/// For query points, Raycast is ~10% slower.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum SignMethod {
    /// A robust method to compute the sign of the distance.
    /// It counts the number of intersection between a ray starting from the query point and the mesh.
    /// If the number of intersections is odd, the point is inside the mesh.
    /// This requires the mesh to be watertight.
    #[default]
    Raycast,
    /// A faster but not robust method to compute the sign of the distance.
    /// It uses the normals of the triangles to estimate the sign.
    /// It might leak negative distances outside the mesh.
    Normal,
}

/// Compare two signed distances, taking into account floating point errors and signs.
fn compare_distances(a: f32, b: f32) -> std::cmp::Ordering {
    // for a point to be inside, it has to be inside all normals of nearest triangles.
    // if one distance is positive, then the point is outside.
    // this check is sensible to floating point errors though
    // so it's not perfect, but it reduces the number of false positives considerably.
    // TODO: expose ulps and epsilon?
    if float_cmp::approx_eq!(f32, a.abs(), b.abs(), ulps = 2, epsilon = 1e-6) {
        // they are equals: return the one with the smallest distance, privileging positive distances.
        match (a.is_sign_negative(), b.is_sign_negative()) {
            (true, false) => std::cmp::Ordering::Greater,
            (false, true) => std::cmp::Ordering::Less,
            _ => a.abs().partial_cmp(&b.abs()).unwrap(),
        }
    } else {
        // return the closest to 0.
        a.abs().partial_cmp(&b.abs()).expect("NaN distance")
    }
}
/// Generate a signed distance field from a mesh.
/// Query points are expected to be in the same space as the mesh.
///
/// Returns a vector of signed distances.
/// Queries outside the mesh will have a positive distance, and queries inside the mesh will have a negative distance.
/// ```
/// use mesh_to_sdf::{generate_sdf, SignMethod, Topology};
///
/// let vertices: Vec<[f32; 3]> = vec![[0., 1., 0.], [1., 2., 3.], [1., 3., 4.]];
/// let indices: Vec<u32> = vec![0, 1, 2];
///
/// let query_points: Vec<[f32; 3]> = vec![[0., 0., 0.]];
///
/// // Query points are expected to be in the same space as the mesh.
/// let sdf: Vec<f32> = generate_sdf(
///     &vertices,
///     Topology::TriangleList(Some(&indices)),
///     &query_points,
///     SignMethod::Raycast, // How the sign is computed.
/// );                       // Raycast is robust but requires the mesh to be watertight.
///
/// for point in query_points.iter().zip(sdf.iter()) {
///     println!("Distance to {:?}: {}", point.0, point.1);
/// }
///
/// # assert_eq!(sdf, vec![1.0]);
/// ```
pub fn generate_sdf<V, I>(
    vertices: &[V],
    indices: Topology<I>,
    query_points: &[V],
    sign_method: SignMethod,
) -> Vec<f32>
where
    V: Point,
    I: Copy + Into<u32> + Sync + Send,
{
    // For each query point, we compute the distance to each triangle.
    // sign is estimated by comparing the normal to the direction.
    // when two triangles give the same distance (wrt floating point errors),
    // we keep the one with positive distance since to be inside means to be inside all triangles.
    // whereas to be outside means to be outside at least one triangle.
    // see `compare_distances` for more details.
    query_points
        .par_iter()
        .map(|query| {
            Topology::get_triangles(vertices, &indices)
                .map(|(i, j, k)| (&vertices[i], &vertices[j], &vertices[k]))
                .map(|(a, b, c)| match sign_method {
                    // Raycast: returns (distance, ray_intersection)
                    SignMethod::Raycast => (
                        geo::point_triangle_distance(query, a, b, c),
                        geo::ray_triangle_intersection_aligned(query, [a, b, c], geo::GridAlign::X)
                            .is_some(),
                    ),
                    // Normal: returns (signed_distance, false)
                    SignMethod::Normal => {
                        (geo::point_triangle_signed_distance(query, a, b, c), false)
                    }
                })
                .fold(
                    (f32::MAX, 0),
                    |(min_distance, intersection_count), (distance, ray_intersection)| {
                        match sign_method {
                            SignMethod::Raycast => (
                                min_distance.min(distance),
                                intersection_count + ray_intersection as u32,
                            ),
                            SignMethod::Normal => (
                                match compare_distances(distance, min_distance) {
                                    std::cmp::Ordering::Less => distance,
                                    _ => min_distance,
                                },
                                intersection_count,
                            ),
                        }
                    },
                )
        })
        .map(|(distance, intersection_count)| {
            if intersection_count % 2 == 0 {
                distance
            } else {
                // can only be odd if in raycast mode
                -distance
            }
        })
        .collect()
}

/// State for the binary heap.
/// Used in [`generate_grid_sdf`].
#[derive(Copy, Clone, Eq, PartialEq)]
struct State {
    // signed distance to mesh.
    distance: NotNan<f32>,
    // current cell in grid.
    cell: [usize; 3],
    // triangle that generated the distance.
    triangle: (usize, usize, usize),
}

impl Ord for State {
    /// We compare by distance first, then use cell and triangles as tie-breakers.
    /// Only the distance is important to reduce the number of steps.
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        compare_distances(other.distance.into_inner(), self.distance.into_inner())
            .then_with(|| self.cell.cmp(&other.cell))
            .then_with(|| self.triangle.cmp(&other.triangle))
    }
}
impl PartialOrd for State {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

/// Generate a signed distance field from a mesh for a grid.
/// See [Grid] for more details on how to create and use a grid.
///
/// Returns a vector of signed distances.
/// Cells outside the mesh will have a positive distance, and cells inside the mesh will have a negative distance.
/// ```
/// use mesh_to_sdf::{generate_grid_sdf, SignMethod, Topology, Grid};
///
/// let vertices: Vec<[f32; 3]> = vec![[0.5, 1.5, 0.5], [1., 2., 3.], [1., 3., 4.]];
/// let indices: Vec<u32> = vec![0, 1, 2];
///
/// let bounding_box_min = [0., 0., 0.];
/// let bounding_box_max = [10., 10., 10.];
/// let cell_count = [10, 10, 10];
///
/// let grid = Grid::from_bounding_box(&bounding_box_min, &bounding_box_max, cell_count);
///
/// let sdf: Vec<f32> = generate_grid_sdf(
///     &vertices,
///     Topology::TriangleList(Some(&indices)),
///     &grid,
///     SignMethod::Raycast, // How the sign is computed.
/// );                       // Raycast is robust but requires the mesh to be watertight.
///
/// for x in 0..cell_count[0] {
///     for y in 0..cell_count[1] {
///         for z in 0..cell_count[2] {
///             let index = grid.get_cell_idx(&[x, y, z]);
///             log::info!("Distance to cell [{}, {}, {}]: {}", x, y, z, sdf[index as usize]);
///         }
///     }
/// }
/// # assert_eq!(sdf[0], 1.0);
/// ```
pub fn generate_grid_sdf<V, I>(
    vertices: &[V],
    indices: Topology<I>,
    grid: &Grid<V>,
    sign_method: SignMethod,
) -> Vec<f32>
where
    V: Point,
    I: Copy + Into<u32> + Sync + Send,
{
    // The generation works in the following way:
    // - init the grid with f32::MAX
    // - for each triangle in the mesh:
    //    - compute the bounding box of the triangle
    //    - for each cell in the bounding box:
    //        - compute the distance to the triangle
    //        - if the distance is smaller than the current distance in the grid, update the grid
    //          and add the cell to the heap.
    //
    // - while the heap is not empty:
    //    - pop the cell with the smallest distance (wrt sign)
    //    - for each neighbour cell:
    //        - compute the distance to the triangle
    //        - if the distance is smaller than the current distance in the grid, update the grid
    //          and add the cell to the heap.
    //
    // - return the grid.
    let mut distances = vec![f32::MAX; grid.get_total_cell_count()];

    let mut heap = std::collections::BinaryHeap::new();

    // debug step counter.
    let mut steps = 0;

    // init heap.
    Topology::get_triangles(vertices, &indices).for_each(|triangle| {
        let a = &vertices[triangle.0];
        let b = &vertices[triangle.1];
        let c = &vertices[triangle.2];

        // TODO: We can reduce the number of point here by following the triangle "slope" instead of the bounding box.
        // Like a bresenham algorithm but in 3D. Not sure how to do it though.
        // This would help a lot for large triangles.
        // But large triangles means not a lot of them so it should be ok without this optimisation.
        let bounding_box = geo::triangle_bounding_box(a, b, c);

        // The bounding box is snapped to the grid.
        let min_cell = match grid.snap_point_to_grid(&bounding_box.0) {
            SnapResult::Inside(cell) | SnapResult::Outside(cell) => cell,
        };
        let max_cell = match grid.snap_point_to_grid(&bounding_box.1) {
            SnapResult::Inside(cell) | SnapResult::Outside(cell) => cell,
        };
        // Add one to max_cell and remove one to min_cell to check nearby cells.
        let min_cell = [
            if min_cell[0] == 0 { 0 } else { min_cell[0] - 1 },
            if min_cell[1] == 0 { 0 } else { min_cell[1] - 1 },
            if min_cell[2] == 0 { 0 } else { min_cell[2] - 1 },
        ];
        let max_cell = [
            (max_cell[0] + 1).min(grid.get_cell_count()[0] - 1),
            (max_cell[1] + 1).min(grid.get_cell_count()[1] - 1),
            (max_cell[2] + 1).min(grid.get_cell_count()[2] - 1),
        ];

        // For each cell in the bounding box.
        for cell in itertools::iproduct!(
            min_cell[0]..=max_cell[0],
            min_cell[1]..=max_cell[1],
            min_cell[2]..=max_cell[2]
        ) {
            let cell = [cell.0, cell.1, cell.2];
            let cell_idx = grid.get_cell_idx(&cell);

            let cell_pos = grid.get_cell_center(&cell);

            let distance = match sign_method {
                SignMethod::Raycast => geo::point_triangle_distance(&cell_pos, a, b, c),
                SignMethod::Normal => geo::point_triangle_signed_distance(&cell_pos, a, b, c),
            };
            if compare_distances(distance, distances[cell_idx]).is_lt() {
                // New smallest ditance: update the grid and add the cell to the heap.
                steps += 1;

                distances[cell_idx] = distance;
                let state = State {
                    distance: NotNan::new(distance).unwrap(), // TODO: handle error
                    triangle,
                    cell,
                };
                heap.push(state);
            }
        }
    });
    // First step is done: we have the closest triangle for each cell.
    // And a bit more since a triangle might erase the distance of another triangle later in the process.

    log::info!("[generate_grid_sdf] init steps: {}", steps);
    steps = 0;

    // Second step: propagate the distance to the neighbours.
    while let Some(State { triangle, cell, .. }) = heap.pop() {
        let a = &vertices[triangle.0];
        let b = &vertices[triangle.1];
        let c = &vertices[triangle.2];

        // Compute neighbours around the cell in the three directions.
        // Discard neighbours that are outside the grid.
        let neighbours = itertools::iproduct!(-1..=1, -1..=1, -1..=1)
            .map(|v| {
                (
                    cell[0] as isize + v.0,
                    cell[1] as isize + v.1,
                    cell[2] as isize + v.2,
                )
            })
            .filter(|&(x, y, z)| {
                x >= 0
                    && y >= 0
                    && z >= 0
                    && x < grid.get_cell_count()[0] as isize
                    && y < grid.get_cell_count()[1] as isize
                    && z < grid.get_cell_count()[2] as isize
            })
            .map(|(x, y, z)| [x as usize, y as usize, z as usize]);

        for neighbour_cell in neighbours {
            let neighbour_cell_pos = grid.get_cell_center(&neighbour_cell);

            let neighbour_cell_idx = grid.get_cell_idx(&neighbour_cell);

            let distance = match sign_method {
                SignMethod::Raycast => geo::point_triangle_distance(&neighbour_cell_pos, a, b, c),
                SignMethod::Normal => {
                    geo::point_triangle_signed_distance(&neighbour_cell_pos, a, b, c)
                }
            };

            if compare_distances(distance, distances[neighbour_cell_idx]).is_lt() {
                // New smallest ditance: update the grid and add the cell to the heap.
                steps += 1;

                distances[neighbour_cell_idx] = distance;
                let state = State {
                    distance: NotNan::new(distance).unwrap(), // TODO: handle error
                    triangle,
                    cell: neighbour_cell,
                };
                heap.push(state);
            }
        }
    }
    log::info!("[generate_grid_sdf] propagation steps: {}", steps);

    if sign_method == SignMethod::Raycast {
        // `ray_triangle_intersection` tests for direction [1.0, 0.0, 0.0]
        // The idea here is to tests for all cells (x=0, y, z) and triangle.
        // To optimize, we first iterate on triangles and for each triangle,
        // only consider cells that are in its bounding box.
        // If there is no intersection, don't consider the triangle.
        // If there is one with distance `t`,
        // each cell before `t` intersects the triangle, each cell after `t` does not.
        // Finally, count the number of intersections for each cell.
        // If the number is odd, the cell is inside the mesh.
        // If the number is even, the cell is outside the mesh.
        // Since this is so inexpensive (n^2 vs n^3), we can afford to do it in the three directions.
        let mut intersections = vec![[0, 0, 0]; grid.get_total_cell_count()];
        let mut raycasts_done = 0;
        for triangle in Topology::get_triangles(vertices, &indices) {
            let a = &vertices[triangle.0];
            let b = &vertices[triangle.1];
            let c = &vertices[triangle.2];
            let bounding_box = geo::triangle_bounding_box(a, b, c);

            // The bounding box is snapped to the grid.
            let min_cell = match grid.snap_point_to_grid(&bounding_box.0) {
                SnapResult::Inside(cell) | SnapResult::Outside(cell) => cell,
            };
            let max_cell = match grid.snap_point_to_grid(&bounding_box.1) {
                SnapResult::Inside(cell) | SnapResult::Outside(cell) => cell,
            };

            // x.
            for y in min_cell[1]..=max_cell[1] {
                for z in min_cell[2]..=max_cell[2] {
                    let cell = [0, y, z];
                    let cell_pos = grid.get_cell_center(&cell);
                    raycasts_done += 1;
                    if let Some(distance) = geo::ray_triangle_intersection_aligned(
                        &cell_pos,
                        [a, b, c],
                        geo::GridAlign::X,
                    ) {
                        let cell_count = distance / grid.get_cell_size().x();
                        let cell_count = cell_count.floor() as usize;
                        for x in 0..=cell_count {
                            let cell = [x, y, z];
                            let cell_idx = grid.get_cell_idx(&cell);
                            intersections[cell_idx][0] += 1;
                        }
                    }
                }
            }

            // y.
            for x in min_cell[0]..=max_cell[0] {
                for z in min_cell[2]..=max_cell[2] {
                    let cell = [x, 0, z];
                    let cell_pos = grid.get_cell_center(&cell);
                    raycasts_done += 1;
                    if let Some(distance) = geo::ray_triangle_intersection_aligned(
                        &cell_pos,
                        [a, b, c],
                        geo::GridAlign::Y,
                    ) {
                        let cell_count = distance / grid.get_cell_size().y();
                        let cell_count = cell_count.floor() as usize;
                        for y in 0..=cell_count {
                            let cell = [x, y, z];
                            let cell_idx = grid.get_cell_idx(&cell);
                            intersections[cell_idx][1] += 1;
                        }
                    }
                }
            }

            // z.
            for x in min_cell[0]..=max_cell[0] {
                for y in min_cell[1]..=max_cell[1] {
                    let cell = [x, y, 0];
                    let cell_pos = grid.get_cell_center(&cell);
                    raycasts_done += 1;
                    if let Some(distance) = geo::ray_triangle_intersection_aligned(
                        &cell_pos,
                        [a, b, c],
                        geo::GridAlign::Z,
                    ) {
                        let cell_count = distance / grid.get_cell_size().z();
                        let cell_count = cell_count.floor() as usize;
                        for z in 0..=cell_count {
                            let cell = [x, y, z];
                            let cell_idx = grid.get_cell_idx(&cell);
                            intersections[cell_idx][2] += 1;
                        }
                    }
                }
            }
        }
        for (i, distance) in distances.iter_mut().enumerate() {
            // distance is always positive here since we didn't check the normal.
            // We decide based on the parity of the intersections.
            // And a best of 3.
            // This helps when the mesh is not watertight
            // and to compensate the discrete nature of the grid.
            let inter = intersections[i];
            match (inter[0] % 2, inter[1] % 2, inter[2] % 2) {
                // if at least two are odd, the cell is deeemed inside.
                (1, 1, _) | (1, _, 1) | (_, 1, 1) => *distance = -*distance,
                // conversely, if at least two are even, the cell is deeemed outside.
                _ => {}
            }
        }
        log::info!("[generate_grid_sdf] raycasts done: {}", raycasts_done);
    }

    distances
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_generate() {
        let model = &easy_gltf::load("assets/suzanne.glb").unwrap()[0].models[0];
        let vertices = model.vertices().iter().map(|v| v.position).collect_vec();
        let indices = model.indices().unwrap();
        let query_points = [
            cgmath::Vector3::new(0.0, 0.0, 0.0),
            cgmath::Vector3::new(1.0, 1.0, 1.0),
            cgmath::Vector3::new(0.1, 0.2, 0.2),
        ];
        let sdf = generate_sdf(
            &vertices,
            crate::Topology::TriangleList(Some(indices)),
            &query_points,
            SignMethod::Normal,
        );

        // pysdf [0.45216727 -0.6997909   0.45411023] # negative is outside in pysdf
        // mesh_to_sdf [-0.40961263  0.6929414  -0.46345082] # negative is inside in mesh_to_sdf
        let baseline = [-0.42, 0.69, -0.46];

        // make sure the results are close enough.
        // the results are not exactly the same because the algorithm is not the same and baselines might not be exact.
        // this is mostly to make sure the results are not completely off.
        for (sdf, baseline) in sdf.iter().zip(baseline.iter()) {
            assert!((sdf - baseline).abs() < 0.1);
        }
    }

    #[test]
    fn test_generate_grid() {
        // make sure generate_grid_sdf returns the same result as generate_sdf.
        // assumes generate_sdf is properly tested and correct.
        let vertices: Vec<[f32; 3]> = vec![[0., 1., 0.], [1., 2., 3.], [1., 3., 4.], [2., 0., 0.]];
        let indices: Vec<u32> = vec![0, 1, 2, 1, 2, 3];
        let grid = Grid::from_bounding_box(&[0., 0., 0.], &[5., 5., 5.], [5, 5, 5]);
        let mut query_points = Vec::new();
        for x in 0..grid.get_cell_count()[0] {
            for y in 0..grid.get_cell_count()[1] {
                for z in 0..grid.get_cell_count()[2] {
                    query_points.push(grid.get_cell_center(&[x, y, z]));
                }
            }
        }
        let sdf = generate_sdf(
            &vertices,
            crate::Topology::TriangleList(Some(&indices)),
            &query_points,
            SignMethod::Raycast,
        );
        let grid_sdf = generate_grid_sdf(
            &vertices,
            crate::Topology::TriangleList(Some(&indices)),
            &grid,
            SignMethod::Raycast,
        );

        // Test against generate_sdf
        for (i, (sdf, grid_sdf)) in sdf.iter().zip(grid_sdf.iter()).enumerate() {
            assert_eq!(sdf, grid_sdf, "i: {}", i);
        }
    }

    /// Test continuity.
    /// Only valid for watertight meshes and Raycast method.
    #[test]
    fn test_grid_continuity() {
        let model = &easy_gltf::load("assets/ferris3d.glb").unwrap()[0].models[0];
        let vertices = model.vertices().iter().map(|v| v.position).collect_vec();
        let indices = model.indices().unwrap();

        let bbox_min = vertices.iter().fold(
            cgmath::Vector3::new(f32::MAX, f32::MAX, f32::MAX),
            |acc, v| cgmath::Vector3 {
                x: acc.x.min(v.x),
                y: acc.y.min(v.y),
                z: acc.z.min(v.z),
            },
        );
        let bbox_max = vertices.iter().fold(
            cgmath::Vector3::new(-f32::MAX, -f32::MAX, -f32::MAX),
            |acc, v| cgmath::Vector3 {
                x: acc.x.max(v.x),
                y: acc.y.max(v.y),
                z: acc.z.max(v.z),
            },
        );

        let extend = 0.2 * (bbox_max - bbox_min);
        let bbox_min = bbox_min - extend;
        let bbox_max = bbox_max + extend;

        // Most of the time is spent reading the file, so we can afford a large grid.
        let grid = Grid::from_bounding_box(&bbox_min, &bbox_max, [32, 32, 32]);

        let sdf = generate_grid_sdf(
            &vertices,
            crate::Topology::TriangleList(Some(&indices)),
            &grid,
            SignMethod::Raycast,
        );

        let test_continuity = |distance: f32, neigh_distance: f32, size: f32| {
            // make sure the unsigned distance respects the triangle inequality.
            let valid_unsigned = (distance.abs() - neigh_distance.abs()).abs() <= size;
            // since the grid is discrete, we cannot support the triangle inequality for near the surface.
            // instead we make sure if there is a sign change, the distance is smaller than the cell size
            // meaning the surface is somewhere around (hopefully between) the two cells.
            // This test is not perfect and might fail for some cases.
            let valid_signed = match (distance * neigh_distance).signum() < 0.0 {
                true => distance.abs() <= size && neigh_distance.abs() <= size,
                false => true,
            };
            assert!(
                valid_unsigned && valid_signed,
                "({} {}) <= {}",
                distance,
                neigh_distance,
                size
            );
        };

        let cell_size = grid.get_cell_size();
        for x in 0..grid.get_cell_count()[0] - 1 {
            for y in 0..grid.get_cell_count()[1] - 1 {
                for z in 0..grid.get_cell_count()[2] - 1 {
                    let index = grid.get_cell_idx(&[x, y, z]);

                    let distance = sdf[index];

                    let neigh = grid.get_cell_idx(&[x + 1, y, z]);
                    let neigh_distance = sdf[neigh];
                    test_continuity(distance, neigh_distance, cell_size.x());

                    let neigh = grid.get_cell_idx(&[x, y + 1, z]);
                    let neigh_distance = sdf[neigh];
                    test_continuity(distance, neigh_distance, cell_size.y());

                    let neigh = grid.get_cell_idx(&[x, y, z + 1]);
                    let neigh_distance = sdf[neigh];
                    test_continuity(distance, neigh_distance, cell_size.z());
                }
            }
        }
    }

    #[test]
    fn test_topology() {
        let grid = Grid::from_bounding_box(&[0., 0., 0.], &[5., 5., 5.], [25, 25, 25]);

        let v0 = [0., 1., 0.];
        let v1 = [1., 2., 3.];
        let v2 = [1., 3., 4.];
        let v3 = [2., 0., 0.];
        // triangles: 012 123 230

        let triangle_list_indices = {
            let vertices: Vec<[f32; 3]> = vec![v0, v1, v2, v3];
            let indices: Vec<u32> = vec![0, 1, 2, 1, 2, 3, 2, 3, 0];
            generate_grid_sdf(
                &vertices,
                crate::Topology::TriangleList(Some(&indices)),
                &grid,
                SignMethod::Normal,
            )
        };

        let triangle_list_none = {
            let vertices: Vec<[f32; 3]> = vec![v0, v1, v2, v1, v2, v3, v2, v3, v0];
            generate_grid_sdf(
                &vertices,
                Topology::TriangleList::<u32>(None),
                &grid,
                SignMethod::Normal,
            )
        };

        let triangle_strip_indices = {
            let vertices: Vec<[f32; 3]> = vec![v0, v1, v2, v3];
            let indices: Vec<u32> = vec![0, 1, 2, 3, 0];
            generate_grid_sdf(
                &vertices,
                Topology::TriangleStrip(Some(&indices)),
                &grid,
                SignMethod::Normal,
            )
        };

        let triangle_strip_none = {
            let vertices: Vec<[f32; 3]> = vec![v0, v1, v2, v3, v0];
            generate_grid_sdf(
                &vertices,
                Topology::TriangleStrip::<u32>(None),
                &grid,
                SignMethod::Normal,
            )
        };

        let cell_count = grid.get_total_cell_count();
        for i in 0..cell_count {
            assert_eq!(triangle_list_indices[i], triangle_list_none[i]);
            assert_eq!(triangle_list_indices[i], triangle_strip_indices[i]);
            assert_eq!(triangle_list_indices[i], triangle_strip_none[i]);
        }
    }
}