1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
use crate::merklebtree::{MerkleBTree, Nodes};
use crate::traits::CalculateHash;
use std::fmt::Debug;

use serde::{Deserialize, Serialize};

pub enum position {
    begin,
    between,
    end,
}

pub struct btree_iterator<'a, T>
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    pub mbtree: &'a mut MerkleBTree,

    pub nodes: &'a mut Nodes<T>,

    pub position: position,

    pub node_id: i32,

    pub content: Option<T>,
}

pub fn new_btree_iterator<'a, T>(
    nodes: &'a mut Nodes<T>,
    position: position,
    mbtree: &'a mut MerkleBTree,
) -> btree_iterator<'a, T>
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    btree_iterator {
        mbtree,
        nodes,
        position,
        node_id: -1,
        content: None,
    }
}

/// Next moves the iterator to the next element and returns true if there was a next element in the container.
/// If Next() returns true, then next element's key and value can be retrieved by Key() and Value().
/// If Next() was called for the first time, then it will point the iterator to the first element if it exists.
/// Modifies the state of the iterator.
pub fn next<T>(mut btree_iterator: &mut btree_iterator<T>) -> bool
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    match btree_iterator.position {
        position::end => {
            end(btree_iterator);
            return false;
        }
        position::begin => {
            let left_node_id = btree_iterator
                .mbtree
                .left(btree_iterator.nodes.root_id, btree_iterator.nodes);
            if left_node_id == -1 {
                end(btree_iterator);
                return false;
            }

            btree_iterator.node_id = left_node_id;
            btree_iterator.content =
                Some(get_content_in_node(left_node_id, &mut btree_iterator, 0));
            between(&mut btree_iterator);
            return true;
        }
        position::between => {
            println!("btree_iterator.node_id {}", btree_iterator.node_id);
            let node = btree_iterator
                .nodes
                .nodes_map
                .get(&btree_iterator.node_id)
                .unwrap();
            let entry = btree_iterator.content.clone().unwrap();
            let index = node.content.binary_search(&entry).unwrap();

            if index + 1 < node.children_id.len() {
                btree_iterator.node_id = *node.children_id.get(index + 1).unwrap();
                // Try to go down to the child left of the current node
                let left_node_id = btree_iterator
                    .mbtree
                    .left(btree_iterator.node_id, btree_iterator.nodes);
                btree_iterator.node_id = left_node_id;
                btree_iterator.content =
                    Some(get_content_in_node(left_node_id, &mut btree_iterator, 0));

                between(&mut btree_iterator);
                return true;
            }
            if index + 1 < node.content.len() {
                btree_iterator.content = Some(get_content_in_node(
                    node.node_id,
                    &mut btree_iterator,
                    (index + 1) as i32,
                ));

                between(&mut btree_iterator);
                return true;
            }

            let mut find_node = &node.clone();
            // Reached leaf node and there are no contents to the right of the current entry, so go up to the parent
            loop {
                println!("find_node.parent_id:{}", find_node.parent_id);
                if find_node.parent_id == -1 {
                    println!("break");
                    break;
                }
                btree_iterator.node_id = find_node.parent_id;
                find_node = btree_iterator
                    .nodes
                    .nodes_map
                    .get(&btree_iterator.node_id)
                    .unwrap();

                println!("find_node.parent_id:{}", find_node.parent_id);
                println!("btree_iterator.node_id:{}", btree_iterator.node_id);
                match find_node.content.binary_search(&entry) {
                    Ok(e) => {
                        let current_node = btree_iterator
                            .nodes
                            .nodes_map
                            .get(&btree_iterator.node_id)
                            .unwrap();

                        println!("wenbin test0.1");
                        if e < current_node.content.len() {
                            println!("wenbin test1");
                            btree_iterator.content = Some(get_content_in_node(
                                btree_iterator.node_id,
                                &mut btree_iterator,
                                e as i32,
                            ));
                            between(&mut btree_iterator);
                            return true;
                        }
                    }
                    Err(e) => {
                        // Check that there is a next entry position in current node
                        let current_node = btree_iterator
                            .nodes
                            .nodes_map
                            .get(&btree_iterator.node_id)
                            .unwrap();

                        println!("wenbin test0.2");
                        println!("{}", e);
                        println!("{}", current_node.content.len());
                        if e < current_node.content.len() {
                            println!("wenbin test1");
                            btree_iterator.content = Some(get_content_in_node(
                                btree_iterator.node_id,
                                &mut btree_iterator,
                                e as i32,
                            ));
                            between(&mut btree_iterator);
                            return true;
                        }
                    }
                }
            }
        }
    }

    between(btree_iterator);
    return false;
}

/// Prev moves the iterator to the previous element and returns true if there was a previous element in the container.
/// If Prev() returns true, then previous element's key and value can be retrieved by Key() and Value().
/// Modifies the state of the iterator.
pub fn prev<T>(mut btree_iterator: &mut btree_iterator<T>) -> bool
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    // If already at beginning, go to begin
    match btree_iterator.position {
        position::begin => {
            begin(btree_iterator);
            return false;
        }
        position::end => {
            let right_node_id = btree_iterator
                .mbtree
                .right(btree_iterator.nodes.root_id, btree_iterator.nodes);
            if right_node_id == -1 {
                begin(btree_iterator);
                return false;
            }

            btree_iterator.node_id = right_node_id;
            let node = btree_iterator
                .nodes
                .nodes_map
                .remove(&right_node_id)
                .unwrap();
            let node_clone = node.clone();

            btree_iterator.nodes.nodes_map.insert(right_node_id, node);
            btree_iterator.content = Some(get_content_in_node(
                right_node_id,
                &mut btree_iterator,
                (node_clone.content.len() - 1) as i32,
            ));
            between(&mut btree_iterator);
            return true;
        }
        position::between => {
            // Find current entry position in current node
            let node = btree_iterator
                .nodes
                .nodes_map
                .remove(&btree_iterator.node_id)
                .unwrap();

            let node_clone = node.clone();
            btree_iterator
                .nodes
                .nodes_map
                .insert(btree_iterator.node_id, node);

            let entry = btree_iterator.content.clone().unwrap();
            let index = node_clone.content.binary_search(&entry).unwrap();

            // Try to go down to the child left of the current entry
            if index < node_clone.children_id.len() {
                btree_iterator.node_id = *node_clone.children_id.get(index).unwrap();
                // Try to go down to the child right of the current node
                let right_node_id = btree_iterator
                    .mbtree
                    .right(btree_iterator.node_id, btree_iterator.nodes);
                let right_node = btree_iterator
                    .nodes
                    .nodes_map
                    .remove(&right_node_id)
                    .unwrap();

                let right_node_clone = right_node.clone();
                btree_iterator
                    .nodes
                    .nodes_map
                    .insert(right_node_id, right_node);

                btree_iterator.node_id = right_node_id;
                btree_iterator.content = Some(get_content_in_node(
                    right_node_id,
                    &mut btree_iterator,
                    (right_node_clone.content.len() - 1) as i32,
                ));

                between(&mut btree_iterator);
                return true;
            }

            // Above assures that we have reached a leaf node, so return the previous entry in current node (if any)
            if index - 1 >= 0 {
                btree_iterator.content = Some(get_content_in_node(
                    node_clone.node_id,
                    &mut btree_iterator,
                    (index - 1) as i32,
                ));
            }

            let mut find_node = &node_clone.clone();
            // Reached leaf node and there are no contents to the left of the current entry, so go up to the parent
            loop {
                if find_node.parent_id == -1 {
                    break;
                }
                btree_iterator.node_id = find_node.parent_id;
                find_node = btree_iterator
                    .nodes
                    .nodes_map
                    .get(&btree_iterator.node_id)
                    .unwrap();
                match find_node.content.binary_search(&entry) {
                    Ok(e) => {
                        let current_node = btree_iterator
                            .nodes
                            .nodes_map
                            .get(&btree_iterator.node_id)
                            .unwrap();
                        if e - 1 >= 0 {
                            btree_iterator.content = Some(get_content_in_node(
                                btree_iterator.node_id,
                                &mut btree_iterator,
                                (e - 1) as i32,
                            ));
                            between(&mut btree_iterator);
                            return true;
                        }
                    }
                    Err(e) => {
                        // Check that there is a next entry position in current node
                        let current_node = btree_iterator
                            .nodes
                            .nodes_map
                            .get(&btree_iterator.node_id)
                            .unwrap();
                        if e - 1 >= 0 {
                            btree_iterator.content = Some(get_content_in_node(
                                btree_iterator.node_id,
                                &mut btree_iterator,
                                (e - 1) as i32,
                            ));
                            between(&mut btree_iterator);
                            return true;
                        }
                    }
                }
            }
        }
    }
    true
}

pub fn get_content_in_node<T>(
    node_id: i32,
    mut btree_iterator: &mut btree_iterator<T>,
    content_index: i32,
) -> T
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    let node = btree_iterator.nodes.nodes_map.remove(&node_id).unwrap();
    let mut node_clone = node.clone();
    btree_iterator.nodes.nodes_map.insert(node_id, node);

    node_clone.content.remove(content_index as usize)
}

/// End moves the iterator past the last element (one-past-the-end).
/// Call Prev() to fetch the last element if any.
pub fn end<T>(btree_iterator: &mut btree_iterator<T>)
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    btree_iterator.node_id = -1;
    btree_iterator.position = position::end;
    btree_iterator.content = None;
}

/// Begin resets the iterator to its initial state (one-before-first)
/// Call Next() to fetch the first element if any.
pub fn begin<T>(btree_iterator: &mut btree_iterator<T>)
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    btree_iterator.node_id = -1;
    btree_iterator.position = position::begin;
    btree_iterator.content = None;
}

pub fn between<T>(btree_iterator: &mut btree_iterator<T>)
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    btree_iterator.position = position::between;
}

pub fn item<T>(mut btree_iterator: &mut btree_iterator<T>) -> T
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    return btree_iterator.content.clone().unwrap();
}

pub fn contents<T>(mut btree_iterator: &mut btree_iterator<T>) -> Vec<T>
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    let mut content = Vec::new();
    loop {
        if next(btree_iterator) {
            content.push(item(btree_iterator))
        } else {
            break;
        }
    }
    content
}

/// First moves the iterator to the first element and returns true if there was a first element in the container.
/// If First() returns true, then first element's key and value can be retrieved by Key() and Value().
/// Modifies the state of the iterator
pub fn first<T>(btree_iterator: &mut btree_iterator<T>) -> bool
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    begin(btree_iterator);
    next(btree_iterator)
}

/// Last moves the iterator to the last element and returns true if there was a last element in the container.
/// If Last() returns true, then last element's key and value can be retrieved by Key() and Value().
/// Modifies the state of the iterator.
pub fn last<T>(btree_iterator: &mut btree_iterator<T>) -> bool
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    end(btree_iterator);
    prev(btree_iterator)
}