1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use ::log::info;
use ::std::{collections::VecDeque, time::Instant};

use crate::mem::{
    PhysicalMemory, PhysicalMemoryMapping, PhysicalMemoryMetadata, PhysicalReadMemOps,
    PhysicalWriteMemOps,
};
use crate::{error::Result, mem::MemOps};

/// The metrics middleware collects metrics data (latency and number of bytes) for all read and write operations.
/// Additionally metrics are outputted via `::log::info` in regular intervals.
///
/// Since this middleware implements [`PhysicalMemory`] it can be used as a replacement
/// in all structs and functions that require the [`PhysicalMemory`] trait.
pub struct PhysicalMemoryMetrics<T> {
    mem: T,
    reads: MemOpsHistory,
    last_read_info: Instant,
    writes: MemOpsHistory,
    last_write_info: Instant,
}

impl<T> Clone for PhysicalMemoryMetrics<T>
where
    T: Clone,
{
    fn clone(&self) -> Self {
        Self {
            mem: self.mem.clone(),
            reads: self.reads.clone(),
            last_read_info: Instant::now(),
            writes: self.writes.clone(),
            last_write_info: Instant::now(),
        }
    }
}

impl<T: PhysicalMemory> PhysicalMemoryMetrics<T> {
    /// Constructs a new middleware.
    pub fn new(mem: T) -> Self {
        // TODO: configurable number of samples?
        Self {
            mem,
            reads: MemOpsHistory::new(0..100, 1.0),
            last_read_info: Instant::now(),
            writes: MemOpsHistory::new(0..100, 1.0),
            last_write_info: Instant::now(),
        }
    }

    /// Consumes self and returns the containing memory object.
    ///
    /// This function can be useful in case the ownership over the memory object has been given to the cache
    /// when it was being constructed.
    /// It will destroy the `self` and return back the ownership of the underlying memory object.
    ///
    /// # Examples
    /// ```
    /// # const MAGIC_VALUE: u64 = 0x23bd_318f_f3a3_5821;
    /// use memflow::architecture::x86::x64;
    /// use memflow::mem::{PhysicalMemory, PhysicalMemoryMetrics, MemoryView};
    ///
    /// fn build<T: PhysicalMemory>(mem: T) -> T {
    ///     let mut middleware = PhysicalMemoryMetrics::new(mem);
    ///
    ///     // use the middleware...
    ///     let value: u64 = middleware.phys_view().read(0.into()).unwrap();
    ///     assert_eq!(value, MAGIC_VALUE);
    ///
    ///     // retrieve ownership of mem and return it back
    ///     middleware.into_inner()
    /// }
    /// # use memflow::dummy::DummyMemory;
    /// # use memflow::types::size;
    /// # let mut mem = DummyMemory::new(size::mb(4));
    /// # mem.phys_write(0.into(), &MAGIC_VALUE).unwrap();
    /// # build(mem);
    /// ```
    pub fn into_inner(self) -> T {
        self.mem
    }
}

// forward PhysicalMemory trait fncs
impl<T: PhysicalMemory> PhysicalMemory for PhysicalMemoryMetrics<T> {
    #[inline]
    fn phys_read_raw_iter(
        &mut self,
        MemOps { inp, out_fail, out }: PhysicalReadMemOps,
    ) -> Result<()> {
        let mut number_of_bytes = 0;
        let iter = inp.inspect(|e| number_of_bytes += e.2.len());

        let start_time = Instant::now();

        let mem = &mut self.mem;
        let result = MemOps::with_raw(iter, out, out_fail, |data| mem.phys_read_raw_iter(data));

        self.reads
            .add(start_time.elapsed().as_secs_f64(), number_of_bytes);

        //if self.reads.total_count() % 10000 == 0 {
        if self.last_read_info.elapsed().as_secs_f64() >= 1f64 {
            info!(
                "Read Metrics: reads_per_second={} average_latency={:.4}ms; average_bytes={}; bytes_per_second={}",
                self.reads.len(),
                self.reads.average_latency().unwrap_or_default() * 1000f64,
                self.reads.average_bytes().unwrap_or_default(),
                self.reads.bandwidth().unwrap_or_default(),
            );
            self.last_read_info = Instant::now();
        }

        result
    }

    #[inline]
    fn phys_write_raw_iter(
        &mut self,
        MemOps { inp, out_fail, out }: PhysicalWriteMemOps,
    ) -> Result<()> {
        let mut number_of_bytes = 0;
        let iter = inp.inspect(|e| number_of_bytes += e.2.len());

        let start_time = Instant::now();

        let mem = &mut self.mem;
        let result = MemOps::with_raw(iter, out, out_fail, |data| mem.phys_write_raw_iter(data));

        self.writes
            .add(start_time.elapsed().as_secs_f64(), number_of_bytes);

        //if self.writes.total_count() % 10000 == 0 {
        if self.last_write_info.elapsed().as_secs_f64() >= 1f64 {
            info!(
                "Write Metrics: writes_per_second={} average_latency={:.4}ms; average_bytes={}; bytes_per_second={}",
                self.writes.len(),
                self.writes.average_latency().unwrap_or_default() * 1000f64,
                self.writes.average_bytes().unwrap_or_default(),
                self.writes.bandwidth().unwrap_or_default(),
            );
            self.last_write_info = Instant::now();
        }

        result
    }

    #[inline]
    fn metadata(&self) -> PhysicalMemoryMetadata {
        self.mem.metadata()
    }

    #[inline]
    fn set_mem_map(&mut self, mem_map: &[PhysicalMemoryMapping]) {
        self.mem.set_mem_map(mem_map)
    }
}

#[cfg(feature = "plugins")]
::cglue::cglue_impl_group!(
    PhysicalMemoryMetrics<T: PhysicalMemory>,
    crate::plugins::ConnectorInstance,
    {}
);

/// This struct tracks latency and length of recent read and write operations.
///
/// It has a minimum and maximum length, as well as a maximum storage time.
/// * The minimum length is to ensure you have enough data for an estimate.
/// * The maximum length is to make sure the history doesn't take up too much space.
/// * The maximum age is to make sure the estimate isn't outdated.
///
/// Time difference between values can be zero, but never negative.
///
/// This implementation is derived from (egui)[https://github.com/emilk/egui/blob/1c8cf9e3d59d8aee4c073b9e17695ee85c40bdbf/crates/emath/src/history.rs].
#[derive(Clone, Debug)]
struct MemOpsHistory {
    start_time: Instant,

    /// In elements, i.e. of `values.len()`.
    /// The length is initially zero, but once past `min_len` will not shrink below it.
    min_len: usize,

    /// In elements, i.e. of `values.len()`.
    max_len: usize,

    /// In seconds.
    max_age: f32,

    /// Total number of elements seen ever
    total_count: u64,

    /// (time, value) pairs, oldest front, newest back.
    /// Time difference between values can be zero, but never negative.
    values: VecDeque<(f64, MemOpsHistoryEntry)>,
}

#[derive(Clone, Copy, Debug)]
struct MemOpsHistoryEntry {
    pub latency: f64, // secs
    pub bytes: usize, // bytes
}

#[allow(unused)]
impl MemOpsHistory {
    pub fn new(length_range: std::ops::Range<usize>, max_age: f32) -> Self {
        Self {
            start_time: Instant::now(),
            min_len: length_range.start,
            max_len: length_range.end,
            max_age,
            total_count: 0,
            values: Default::default(),
        }
    }

    #[inline]
    pub fn max_len(&self) -> usize {
        self.max_len
    }

    #[inline]
    pub fn max_age(&self) -> f32 {
        self.max_age
    }

    #[inline]
    pub fn is_empty(&self) -> bool {
        self.values.is_empty()
    }

    /// Current number of values kept in history
    #[inline]
    pub fn len(&self) -> usize {
        self.values.len()
    }

    /// Total number of values seen.
    /// Includes those that have been discarded due to `max_len` or `max_age`.
    #[inline]
    pub fn total_count(&self) -> u64 {
        self.total_count
    }

    #[inline]
    pub fn clear(&mut self) {
        self.values.clear();
    }

    /// Values must be added with a monotonically increasing time, or at least not decreasing.
    pub fn add(&mut self, latency: f64, bytes: usize) {
        let now = self.start_time.elapsed().as_secs_f64();
        if let Some((last_time, _)) = self.values.back() {
            assert!(now >= *last_time, "Time shouldn't move backwards");
        }
        self.total_count += 1;
        self.values
            .push_back((now, MemOpsHistoryEntry { latency, bytes }));
        self.flush();
    }

    /// Mean time difference between values in this [`History`].
    pub fn mean_time_interval(&self) -> Option<f64> {
        if let (Some(first), Some(last)) = (self.values.front(), self.values.back()) {
            let n = self.len();
            if n >= 2 {
                Some((last.0 - first.0) / ((n - 1) as f64))
            } else {
                None
            }
        } else {
            None
        }
    }

    // Mean number of events per second.
    pub fn rate(&self) -> Option<f64> {
        self.mean_time_interval().map(|time| 1.0 / time)
    }

    /// Remove samples that are too old.
    pub fn flush(&mut self) {
        let now = self.start_time.elapsed().as_secs_f64();
        while self.values.len() > self.max_len {
            self.values.pop_front();
        }
        while self.values.len() > self.min_len {
            if let Some((front_time, _)) = self.values.front() {
                if *front_time < now - (self.max_age as f64) {
                    self.values.pop_front();
                } else {
                    break;
                }
            } else {
                break;
            }
        }
    }

    /// Returns the sum of all latencys
    #[inline]
    pub fn sum_latency(&self) -> f64 {
        self.values.iter().map(|(_, value)| value.latency).sum()
    }

    /// Returns the average latency
    pub fn average_latency(&self) -> Option<f64> {
        let num = self.len();
        if num > 0 {
            Some(self.sum_latency() / (num as f64))
        } else {
            None
        }
    }

    /// Returns the sum of bytes transmitted
    #[inline]
    pub fn sum_bytes(&self) -> usize {
        self.values.iter().map(|(_, value)| value.bytes).sum()
    }

    /// Returns the average number of bytes transmitted
    pub fn average_bytes(&self) -> Option<usize> {
        let num = self.len();
        if num > 0 {
            Some((self.sum_bytes() as f64 / (num as f64)) as usize)
        } else {
            None
        }
    }

    /// Returns the number of bytes per second
    pub fn bandwidth(&self) -> Option<usize> {
        Some((self.average_bytes()? as f64 * self.rate()?) as usize)
    }
}