1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
//! Virtual address translation
//!
//! This module describes virtual to physical address translation interfaces.
//!
//! * [VirtualTranslate](VirtualTranslate) - user facing trait providing a way to translate
//! addresses.
//!
//! * [VirtualTranslate2](VirtualTranslate2) - internally used trait that translates pairs of
//! buffers and virtual addresses into pairs of buffers and their corresponding physical addresses.
//! Is used to provide [virtual memory view](crate::mem::virt_mem::virtual_dma). This trait is also
//! a [point of caching](crate::mem::virt_translate::cache) for the translations.
//!
//! * [VirtualTranslate3](VirtualTranslate3) - a sub-scope that translates addresses of a single
//! address space. Objects that implement VirtualTranslate3 are designed to be cheap to construct,
//! because they use pooled resources from VirtualTranslate2 objects. This is equivalent to storing
//! a single VirtualTranslate2 state for the OS, while constructing VirtualTranslate3 instances for
//! each process. This is precisely what is being done in our Win32 OS (see
//! [here](https://github.com/memflow/memflow-win32/blob/791bb7afb8a984034dde314c136b7675b44e3abf/src/win32/process.rs#L348),
//! and
//! [here](https://github.com/memflow/memflow-win32/blob/791bb7afb8a984034dde314c136b7675b44e3abf/src/win32/process.rs#L314)).
//!
//! Below figure shows entire pipeline of a virtual address translating object with caching.
//!
//! ```text
//! +--------------------------+
//! |      (Win32Process)      |
//! |     VirtualTranslate     | (Contains VT2+VT3+Phys)
//! |        MemoryView        |
//! +--------------------------+
//!             |
//!             |
//! +-----------+--------------+
//! | (CachedVirtualTranslate) | (Accepts VT3+Phys)
//! |    VirtualTranslate2     | (Point of caching)
//! +--------------------------+
//!             |
//!             |
//!    +--------+----------+
//!    | (DirectTranslate) | (Accepts VT3+Phys)
//!    | VirtualTranslate2 | (Contains 64MB buffer)
//!    +-------------------+
//!             |
//!             |
//!  +----------+-------------+
//!  | (X86 VirtualTranslate) | (Accepts 64MB buffer+Phys)
//!  |   VirtualTranslate3    | (Contains CR3+ArchMmuSpec)
//!  +------------------------+
//!             |
//!             |
//!      +------+------+
//!      | ArchMmuSpec | (Accepts translation root (CR3), buffer, Phys)
//!      +-------------+ (Contains architecture specification)
//!             |
//!             |
//!     +-------+--------+
//!     | PhysicalMemory | (Accepts special page flags)
//!     +----------------+
//!             |
//!             |
//!            ... (Further nesting)
//! ```

use std::prelude::v1::*;

use super::{MemoryRange, MemoryRangeCallback, VtopRange};

use std::cmp::*;

use cglue::prelude::v1::*;
use itertools::Itertools;

pub mod direct_translate;
use crate::iter::SplitAtIndex;
pub use direct_translate::DirectTranslate;

use crate::architecture::ArchitectureObj;
use crate::types::gap_remover::GapRemover;

#[macro_use]
pub mod mmu;

pub mod cache;

pub use cache::*;

#[cfg(test)]
mod tests;

use crate::error::{Result, *};

use crate::mem::PhysicalMemory;
use crate::types::{imem, umem, Address, Page, PhysicalAddress};

/// Translates virtual addresses into physical ones.
///
/// This is a simple user-facing trait to perform virtual address translations. Implementor needs
/// to implement only 1 function - [virt_to_phys_list](VirtualTranslate::virt_to_phys_list). Other
/// functions are provided as helpers built on top of the base function.
///
/// For overview how this trait relates to other virtual translation traits,
/// check out documentation of [this module](self).
#[cfg_attr(feature = "plugins", cglue_trait)]
#[int_result]
pub trait VirtualTranslate: Send {
    /// Translate a list of address ranges into physical address space.
    ///
    /// This function will take addresses in `addrs` and produce translation of them into `out`.
    /// Any unsuccessful ranges will be sent to `out_fail`.
    ///
    /// # Remarks
    ///
    /// Note that the number of outputs may not match the number of inputs - virtual address space
    /// does not usually map linearly to the physical one, thus the input may need to be split into
    /// smaller parts, which may not be combined back together.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::DummyOs;
    ///
    /// // Virtual translation test
    /// fn vtop(mem: &mut impl VirtualTranslate, addr: Address) {
    ///     let mut cnt = 0;
    ///     mem.virt_to_phys_list(
    ///         &[CTup2(addr, 0x2000)],
    ///         // Successfully translated
    ///         (&mut |_| { cnt += 1; true }).into(),
    ///         // Failed to translate
    ///         (&mut |v| panic!("Failed to translate: {:?}", v)).into()
    ///     );
    ///     // We attempt to translate 2 pages, thus there are 2 outputs.
    ///     assert_eq!(2, cnt);
    /// }
    /// # let mut proc = DummyOs::quick_process(size::mb(2), &[]);
    /// # let addr = proc.info().address;
    /// # vtop(&mut proc.mem, addr);
    /// ```
    fn virt_to_phys_list(
        &mut self,
        addrs: &[VtopRange],
        out: VirtualTranslationCallback,
        out_fail: VirtualTranslationFailCallback,
    );

    /// Translate a single virtual address range into physical address space.
    ///
    /// This function is a helper for [`virt_to_phys_list`](Self::virt_to_phys_list) that translates
    /// just a single range, and has no failure output. It is otherwise identical.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::DummyOs;
    ///
    /// // Virtual translation test
    /// fn vtop(mem: &mut impl VirtualTranslate, addr: Address) {
    ///     let mut cnt = 0;
    ///     mem.virt_to_phys_range(
    ///         addr, addr + 0x2000,
    ///         // Successfully translated
    ///         (&mut |_| { cnt += 1; true }).into(),
    ///     );
    ///     // We attempt to translate 2 pages, thus there are 2 outputs.
    ///     assert_eq!(2, cnt);
    /// }
    /// # let mut proc = DummyOs::quick_process(size::mb(2), &[]);
    /// # let addr = proc.info().address;
    /// # vtop(&mut proc.mem, addr);
    /// ```
    fn virt_to_phys_range(
        &mut self,
        start: Address,
        end: Address,
        out: VirtualTranslationCallback,
    ) {
        assert!(end >= start);
        self.virt_to_phys_list(
            &[CTup2(start, (end - start) as umem)],
            out,
            (&mut |_| true).into(),
        )
    }

    /// Translate a single virtual address range into physical address space and coalesce nearby
    /// regions.
    ///
    /// This function is nearly identical to [`virt_to_phys_range`](Self::virt_to_phys_range), however,
    /// it performs additional post-processing of the output to combine consecutive ranges, and
    /// output them in sorted order (by input virtual address).
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// use memflow::dummy::{DummyOs, DummyMemory};
    ///
    /// // Create a dummy OS
    /// let mem = DummyMemory::new(size::mb(1));
    /// let mut os = DummyOs::new(mem);
    ///
    /// // Create a process with 1+10 randomly placed regions
    /// let pid = os.alloc_process(size::kb(4), &[]);
    /// let proc = os.process_by_pid(pid).unwrap().proc;
    /// os.process_alloc_random_mem(&proc, 10, 1);
    /// let mut mem = os.process_by_pid(pid).unwrap().mem;
    ///
    /// // Translate entire address space
    /// let mut output = vec![];
    ///
    /// mem.virt_translation_map_range(
    ///     Address::null(),
    ///     Address::invalid(),
    ///     (&mut output).into()
    /// );
    ///
    /// // There should be 11 memory ranges.
    /// assert_eq!(11, output.len());
    /// ```
    fn virt_translation_map_range(
        &mut self,
        start: Address,
        end: Address,
        out: VirtualTranslationCallback,
    ) {
        let mut set = std::collections::BTreeSet::new();

        self.virt_to_phys_range(
            start,
            end,
            (&mut |v| {
                set.insert(v);
                true
            })
                .into(),
        );

        set.into_iter()
            .coalesce(|a, b| {
                // TODO: Probably make the page size reflect the merge
                if b.in_virtual == (a.in_virtual + a.size)
                    && b.out_physical.address() == (a.out_physical.address() + a.size)
                    && a.out_physical.page_type() == b.out_physical.page_type()
                {
                    Ok(VirtualTranslation {
                        in_virtual: a.in_virtual,
                        size: a.size + b.size,
                        out_physical: a.out_physical,
                    })
                } else {
                    Err((a, b))
                }
            })
            .feed_into(out);
    }

    /// Retrieves mapped virtual pages in the specified range.
    ///
    /// In case a range from [`Address::null()`], [`Address::invalid()`] is specified
    /// this function will return all mappings.
    ///
    /// Given negative gap size, they will not be removed.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::architecture::x86::x64;
    /// # let dummy_mem = DummyMemory::new(size::mb(16));
    /// # let mut dummy_os = DummyOs::new(dummy_mem);
    /// # let (dtb, virt_base) = dummy_os.alloc_dtb(size::mb(2), &[]);
    /// # let translator = x64::new_translator(dtb);
    /// # let arch = x64::ARCH;
    /// # let mut virt_mem = VirtualDma::new(dummy_os.forward_mut(), arch, translator);
    /// println!("{:>16} {:>12} {:<}", "ADDR", "SIZE", "TYPE");
    ///
    /// let callback = &mut |CTup3(addr, size, pagety)| {
    ///     println!("{:>16x} {:>12x} {:<?}", addr, size, pagety);
    ///     true
    /// };
    ///
    /// // display all mappings with a gap size of 0
    /// virt_mem.virt_page_map_range(0, Address::null(), Address::invalid(), callback.into());
    /// ```
    fn virt_page_map_range(
        &mut self,
        gap_size: imem,
        start: Address,
        end: Address,
        out: MemoryRangeCallback,
    ) {
        let mut gap_remover = GapRemover::new(out, gap_size, start, end);

        self.virt_to_phys_range(
            start,
            end,
            (&mut |VirtualTranslation {
                       in_virtual,
                       size,
                       out_physical,
                   }| {
                gap_remover.push_range(CTup3(in_virtual, size, out_physical.page_type));
                true
            })
                .into(),
        );
    }

    /// Translate a single virtual address into a single physical address.
    ///
    /// This is the simplest translation function that performs single address translation.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::DummyOs;
    ///
    /// // Virtual translation test
    /// fn vtop(mem: &mut impl VirtualTranslate, addr: Address) {
    ///     assert!(mem.virt_to_phys(addr).is_ok());
    /// }
    /// # let mut proc = DummyOs::quick_process(size::mb(2), &[]);
    /// # let addr = proc.info().address;
    /// # vtop(&mut proc.mem, addr);
    /// ```
    fn virt_to_phys(&mut self, address: Address) -> Result<PhysicalAddress> {
        let mut out = Err(Error(ErrorOrigin::VirtualTranslate, ErrorKind::OutOfBounds));

        self.virt_to_phys_list(
            &[CTup2(address, 1)],
            (&mut |VirtualTranslation {
                       in_virtual: _,
                       size: _,
                       out_physical,
                   }| {
                out = Ok(out_physical);
                false
            })
                .into(),
            (&mut |_| true).into(),
        );

        out
    }

    /// Retrieve page information at virtual address.
    ///
    /// This function is equivalent to calling
    /// [containing_page](crate::types::physical_address::PhysicalAddress::containing_page) on
    /// [`virt_to_phys`](Self::virt_to_phys) result.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::DummyOs;
    ///
    /// // Virtual translation test
    /// fn vtop(mem: &mut impl VirtualTranslate, addr: Address) {
    ///     let page = mem.virt_page_info(addr).unwrap();
    ///     assert_eq!(page.page_size, mem::kb(4));
    ///     assert_eq!(page.page_type, PageType::WRITEABLE);
    /// }
    /// # let mut proc = DummyOs::quick_process(size::mb(2), &[]);
    /// # let addr = proc.info().address;
    /// # vtop(&mut proc.mem, addr);
    /// ```
    fn virt_page_info(&mut self, addr: Address) -> Result<Page> {
        let paddr = self.virt_to_phys(addr)?;
        Ok(paddr.containing_page())
    }

    /// Retrieve a vector of physical pages within given range.
    ///
    /// This is equivalent to calling [`virt_page_map_range`](Self::virt_page_map_range) with a
    /// vector output argument.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::architecture::x86::x64;
    /// # let dummy_mem = DummyMemory::new(size::mb(16));
    /// # let mut dummy_os = DummyOs::new(dummy_mem);
    /// # let (dtb, virt_base) = dummy_os.alloc_dtb(size::mb(2), &[]);
    /// # let translator = x64::new_translator(dtb);
    /// # let arch = x64::ARCH;
    /// # let mut virt_mem = VirtualDma::new(dummy_os.forward_mut(), arch, translator);
    /// println!("{:>16} {:>12} {:<}", "ADDR", "SIZE", "TYPE");
    ///
    /// // display all mappings with a gap size of 0
    /// let out = virt_mem.virt_page_map_range_vec(0, Address::null(), Address::invalid());
    ///
    /// assert!(out.len() > 0);
    ///
    /// for CTup3(addr, size, pagety) in out {
    ///     println!("{:>16x} {:>12x} {:<?}", addr, size, pagety);
    /// }
    /// ```
    #[skip_func]
    fn virt_page_map_range_vec(
        &mut self,
        gap_size: imem,
        start: Address,
        end: Address,
    ) -> Vec<MemoryRange> {
        let mut out = vec![];
        self.virt_page_map_range(gap_size, start, end, (&mut out).into());
        out
    }

    // page map helpers

    /// Get virtual translation map over entire address space.
    ///
    /// This is equivalent to [`virt_translation_map_range`](Self::virt_translation_map_range) with a
    /// range from null to highest address.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// use memflow::dummy::{DummyOs, DummyMemory};
    ///
    /// // Create a dummy OS
    /// let mem = DummyMemory::new(size::mb(1));
    /// let mut os = DummyOs::new(mem);
    ///
    /// // Create a process with 1+10 randomly placed regions
    /// let pid = os.alloc_process(size::kb(4), &[]);
    /// let proc = os.process_by_pid(pid).unwrap().proc;
    /// os.process_alloc_random_mem(&proc, 10, 1);
    /// let mut mem = os.process_by_pid(pid).unwrap().mem;
    ///
    /// // Translate entire address space
    /// let mut output = vec![];
    ///
    /// mem.virt_translation_map((&mut output).into());
    ///
    /// // There should be 11 memory ranges.
    /// assert_eq!(11, output.len());
    /// ```
    fn virt_translation_map(&mut self, out: VirtualTranslationCallback) {
        self.virt_translation_map_range(Address::null(), Address::invalid(), out)
    }

    /// Get virtual translation map over entire address space and return it as a vector.
    ///
    /// This is a [`virt_translation_map`](Self::virt_translation_map) helper that stores results
    /// into a vector that gets returned.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// use memflow::dummy::{DummyOs, DummyMemory};
    ///
    /// // Create a dummy OS
    /// let mem = DummyMemory::new(size::mb(1));
    /// let mut os = DummyOs::new(mem);
    ///
    /// // Create a process with 1+10 randomly placed regions
    /// let pid = os.alloc_process(size::kb(4), &[]);
    /// let proc = os.process_by_pid(pid).unwrap().proc;
    /// os.process_alloc_random_mem(&proc, 10, 1);
    /// let mut mem = os.process_by_pid(pid).unwrap().mem;
    ///
    /// // Translate entire address space
    /// let output = mem.virt_translation_map_vec();
    ///
    /// // There should be 11 memory ranges.
    /// assert_eq!(11, output.len());
    /// ```
    #[skip_func]
    fn virt_translation_map_vec(&mut self) -> Vec<VirtualTranslation> {
        let mut out = vec![];
        self.virt_translation_map((&mut out).into());
        out
    }

    /// Attempt to translate a physical address into a virtual one.
    ///
    /// This function is the reverse of [`virt_to_phys`](Self::virt_to_phys). Note, that there
    /// could could be multiple virtual addresses for one physical address. If all candidates
    /// are needed, use [`phys_to_virt_vec`](Self::phys_to_virt_vec) function.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::DummyOs;
    ///
    /// // Virtual translation and reversal test
    /// fn vtop_ptov(mem: &mut impl VirtualTranslate, addr: Address) {
    ///     let paddr = mem.virt_to_phys(addr).unwrap();
    ///     let vaddr = mem.phys_to_virt(paddr.address());
    ///     assert_eq!(vaddr, Some(addr));
    /// }
    /// # let mut proc = DummyOs::quick_process(size::mb(2), &[]);
    /// # let addr = proc.info().address;
    /// # vtop_ptov(&mut proc.mem, addr);
    /// ```
    fn phys_to_virt(&mut self, phys: Address) -> Option<Address> {
        let mut virt = None;

        let callback = &mut |VirtualTranslation {
                                 in_virtual,
                                 size: _,
                                 out_physical,
                             }| {
            if out_physical.address() == phys {
                virt = Some(in_virtual);
                false
            } else {
                true
            }
        };

        self.virt_translation_map(callback.into());

        virt
    }

    /// Retrieve all virtual address that map into a given physical address.
    ///
    /// This function is the reverse of [`virt_to_phys`](Self::virt_to_phys), and it retrieves all
    /// physical addresses that map to this virtual address.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::DummyOs;
    ///
    /// // Virtual translation and reversal test
    /// fn vtop_ptov(mem: &mut impl VirtualTranslate, addr: Address) {
    ///     let paddr = mem.virt_to_phys(addr).unwrap();
    ///     let vaddrs = mem.phys_to_virt_vec(paddr.address());
    ///     assert_eq!(&vaddrs, &[addr]);
    /// }
    /// # let mut proc = DummyOs::quick_process(size::mb(2), &[]);
    /// # let addr = proc.info().address;
    /// # vtop_ptov(&mut proc.mem, addr);
    /// ```
    #[skip_func]
    fn phys_to_virt_vec(&mut self, phys: Address) -> Vec<Address> {
        let mut virt = vec![];

        let callback = &mut |VirtualTranslation {
                                 in_virtual,
                                 size: _,
                                 out_physical,
                             }| {
            if out_physical.address() == phys {
                virt.push(in_virtual);
                true
            } else {
                true
            }
        };

        self.virt_translation_map(callback.into());

        virt
    }

    /// Retrieves all mapped virtual pages.
    ///
    /// The [`virt_page_map`](Self::virt_page_map) function is a convenience wrapper for calling
    /// [`virt_page_map_range`](Self::virt_page_map_range)`(gap_size, Address::null(), Address::invalid(), out)`.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::architecture::x86::x64;
    /// # let dummy_mem = DummyMemory::new(size::mb(16));
    /// # let mut dummy_os = DummyOs::new(dummy_mem);
    /// # let (dtb, virt_base) = dummy_os.alloc_dtb(size::mb(2), &[]);
    /// # let translator = x64::new_translator(dtb);
    /// # let arch = x64::ARCH;
    /// # let mut virt_mem = VirtualDma::new(dummy_os.forward_mut(), arch, translator);
    /// println!("{:>16} {:>12} {:<}", "ADDR", "SIZE", "TYPE");
    ///
    /// let callback = &mut |CTup3(addr, size, pagety)| {
    ///     println!("{:>16x} {:>12x} {:<?}", addr, size, pagety);
    ///     true
    /// };
    ///
    /// // display all mappings with a gap size of 0
    /// virt_mem.virt_page_map(0, callback.into());
    /// ```
    fn virt_page_map(&mut self, gap_size: imem, out: MemoryRangeCallback) {
        self.virt_page_map_range(gap_size, Address::null(), Address::invalid(), out)
    }

    /// Returns a [`Vec`] of all mapped virtual pages.
    ///
    /// The [`virt_page_map`](Self::virt_page_map) function is a convenience wrapper for calling
    /// [`virt_page_map_range`](Self::virt_page_map_range)`(gap_size, Address::null(), Address::invalid(), out)`.
    ///
    /// # Remarks:
    ///
    /// This function has to allocate all MemoryRanges when they are put into a [`Vec`].
    /// If the additional allocations are undesired please use the provided [`virt_page_map`](Self::virt_page_map) with an appropiate callback.
    ///
    /// # Example:
    ///
    /// ```
    /// use memflow::prelude::v1::*;
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::architecture::x86::x64;
    /// # let dummy_mem = DummyMemory::new(size::mb(16));
    /// # let mut dummy_os = DummyOs::new(dummy_mem);
    /// # let (dtb, virt_base) = dummy_os.alloc_dtb(size::mb(2), &[]);
    /// # let translator = x64::new_translator(dtb);
    /// # let arch = x64::ARCH;
    /// # let mut virt_mem = VirtualDma::new(dummy_os.forward_mut(), arch, translator);
    /// // acquire all mappings with a gap size of 0
    /// let maps = virt_mem.virt_page_map_vec(0);
    ///
    /// println!("{:>16} {:>12} {:<}", "ADDR", "SIZE", "TYPE");
    /// for CTup3(addr, size, pagety) in maps.iter() {
    ///     println!("{:>16x} {:>12x} {:<?}", addr, size, pagety);
    /// };
    /// ```
    #[skip_func]
    fn virt_page_map_vec(&mut self, gap_size: imem) -> Vec<MemoryRange> {
        let mut out = vec![];
        self.virt_page_map(gap_size, (&mut out).into());
        out
    }
}

pub type VirtualTranslationCallback<'a> = OpaqueCallback<'a, VirtualTranslation>;
pub type VirtualTranslationFailCallback<'a> = OpaqueCallback<'a, VirtualTranslationFail>;

/// Virtual page range information with physical mappings used for callbacks
#[repr(C)]
#[derive(Clone, Debug, Eq, Copy)]
#[cfg_attr(feature = "serde", derive(::serde::Serialize, ::serde::Deserialize))]
#[cfg_attr(feature = "abi_stable", derive(::abi_stable::StableAbi))]
pub struct VirtualTranslation {
    pub in_virtual: Address,
    pub size: umem,
    pub out_physical: PhysicalAddress,
}

impl Ord for VirtualTranslation {
    fn cmp(&self, other: &Self) -> Ordering {
        self.in_virtual.cmp(&other.in_virtual)
    }
}

impl PartialOrd for VirtualTranslation {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for VirtualTranslation {
    fn eq(&self, other: &Self) -> bool {
        self.in_virtual == other.in_virtual
    }
}

#[repr(C)]
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde", derive(::serde::Serialize, ::serde::Deserialize))]
#[cfg_attr(feature = "abi_stable", derive(::abi_stable::StableAbi))]
pub struct VirtualTranslationFail {
    pub from: Address,
    pub size: umem,
}

pub trait VirtualTranslate2
where
    Self: Send,
{
    /// Translate a list of virtual addresses
    ///
    /// This function will do a virtual to physical memory translation for the
    /// `VirtualTranslate3` over multiple elements.
    ///
    /// In most cases, you will want to use the `VirtualDma`, but this trait is provided if needed
    /// to implement some more advanced filtering.
    ///
    /// # Examples
    ///
    /// ```
    /// # use memflow::error::Result;
    /// # use memflow::types::{PhysicalAddress, Address, umem};
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// use memflow::mem::{VirtualTranslate2, DirectTranslate};
    /// use memflow::types::size;
    /// use memflow::architecture::x86::x64;
    /// use memflow::cglue::{FromExtend, CTup3};
    ///
    /// use std::convert::TryInto;
    ///
    /// # const VIRT_MEM_SIZE: usize = size::mb(8) as usize;
    /// # const CHUNK_SIZE: usize = 2;
    /// #
    /// # let mem = DummyMemory::new(size::mb(16));
    /// # let mut os = DummyOs::new(mem);
    /// # let (dtb, virtual_base) = os.alloc_dtb(VIRT_MEM_SIZE, &[]);
    /// # let mut mem = os.into_inner();
    /// # let translator = x64::new_translator(dtb);
    /// let arch = x64::ARCH;
    ///
    /// let mut buffer = vec![0; VIRT_MEM_SIZE * CHUNK_SIZE / arch.page_size()];
    /// let buffer_length = buffer.len();
    ///
    /// // In this example, 8 megabytes starting from `virtual_base` are mapped in.
    /// // We translate 2 bytes chunks over the page boundaries. These bytes will be
    /// // split off into 2 separate translated chunks.
    /// let addresses = buffer
    ///     .chunks_mut(CHUNK_SIZE)
    ///     .enumerate()
    ///     .map(|(i, buf)| CTup3(virtual_base + ((i + 1) * size::kb(4) - 1), Address::NULL, buf));
    ///
    /// let mut translated_data = vec![];
    /// let mut failed_translations = &mut |_| true;
    ///
    /// let mut direct_translate = DirectTranslate::new();
    ///
    /// direct_translate.virt_to_phys_iter(
    ///     &mut mem,
    ///     &translator,
    ///     addresses,
    ///     &mut translated_data.from_extend(),
    ///     &mut failed_translations.into(),
    /// );
    ///
    ///
    /// // We tried to translate one byte out of the mapped memory, it had to fail
    /// assert_eq!(translated_data.len(), buffer_length - 1);
    ///
    /// # Ok::<(), memflow::error::Error>(())
    /// ```
    fn virt_to_phys_iter<T, B, D, VI>(
        &mut self,
        phys_mem: &mut T,
        translator: &D,
        addrs: VI,
        out: &mut VtopOutputCallback<B>,
        out_fail: &mut VtopFailureCallback<B>,
    ) where
        T: PhysicalMemory + ?Sized,
        B: SplitAtIndex,
        D: VirtualTranslate3,
        VI: Iterator<Item = CTup3<Address, Address, B>>;

    /// Translate a single virtual address
    ///
    /// This function will do a virtual to physical memory translation for the
    /// `VirtualTranslate3` for single address returning either PhysicalAddress, or an error.
    ///
    /// # Examples
    /// ```
    /// # use memflow::error::Result;
    /// # use memflow::types::{PhysicalAddress, Address, umem};
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::types::size;
    /// # use memflow::mem::VirtualTranslate3;
    /// use memflow::mem::{VirtualTranslate2, DirectTranslate};
    /// use memflow::architecture::x86::x64;
    ///
    /// # const VIRT_MEM_SIZE: usize = size::mb(8);
    /// # const CHUNK_SIZE: usize = 2;
    /// #
    /// # let mem = DummyMemory::new(size::mb(16));
    /// # let mut os = DummyOs::new(mem);
    /// # let (dtb, virtual_base) = os.alloc_dtb(VIRT_MEM_SIZE, &[]);
    /// # let mut mem = os.into_inner();
    /// # let translator = x64::new_translator(dtb);
    /// let arch = x64::ARCH;
    ///
    /// let mut direct_translate = DirectTranslate::new();
    ///
    /// // Translate a mapped address
    /// let res = direct_translate.virt_to_phys(
    ///     &mut mem,
    ///     &translator,
    ///     virtual_base,
    /// );
    ///
    /// assert!(res.is_ok());
    ///
    /// // Translate unmapped address
    /// let res = direct_translate.virt_to_phys(
    ///     &mut mem,
    ///     &translator,
    ///     virtual_base - 1,
    /// );
    ///
    /// assert!(res.is_err());
    ///
    /// ```
    fn virt_to_phys<T: PhysicalMemory + ?Sized, D: VirtualTranslate3>(
        &mut self,
        phys_mem: &mut T,
        translator: &D,
        vaddr: Address,
    ) -> Result<PhysicalAddress> {
        let mut output = None;
        let success = &mut |elem: CTup3<PhysicalAddress, Address, _>| {
            if output.is_none() {
                output = Some(elem.0);
            }
            false
        };
        let mut output_err = None;
        let fail = &mut |elem: (Error, _)| {
            output_err = Some(elem.0);
            true
        };

        self.virt_to_phys_iter(
            phys_mem,
            translator,
            Some(CTup3::<_, _, umem>(vaddr, vaddr, 1)).into_iter(),
            &mut success.into(),
            &mut fail.into(),
        );
        output.map(Ok).unwrap_or_else(|| Err(output_err.unwrap()))
    }
}

// forward impls
impl<T, P> VirtualTranslate2 for P
where
    T: VirtualTranslate2 + ?Sized,
    P: std::ops::DerefMut<Target = T> + Send,
{
    #[inline]
    fn virt_to_phys_iter<U, B, D, VI>(
        &mut self,
        phys_mem: &mut U,
        translator: &D,
        addrs: VI,
        out: &mut VtopOutputCallback<B>,
        out_fail: &mut VtopFailureCallback<B>,
    ) where
        U: PhysicalMemory + ?Sized,
        B: SplitAtIndex,
        D: VirtualTranslate3,
        VI: Iterator<Item = CTup3<Address, Address, B>>,
    {
        (**self).virt_to_phys_iter(phys_mem, translator, addrs, out, out_fail)
    }
}

/// Translates virtual memory to physical using internal translation base (usually a process' dtb)
///
/// This trait abstracts virtual address translation for a single virtual memory scope.
/// On x86 architectures, it is a single `Address` - a CR3 register. But other architectures may
/// use multiple translation bases, or use a completely different translation mechanism (MIPS).
pub trait VirtualTranslate3: Clone + Copy + Send {
    /// Translate a single virtual address
    ///
    /// # Examples
    /// ```
    /// # use memflow::error::Result;
    /// # use memflow::types::{PhysicalAddress, Address};
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// use memflow::mem::VirtualTranslate3;
    /// use memflow::architecture::x86::x64;
    /// use memflow::types::{size, umem};
    ///
    /// # const VIRT_MEM_SIZE: usize = size::mb(8);
    /// # const CHUNK_SIZE: usize = 2;
    /// #
    /// # let mem = DummyMemory::new(size::mb(16));
    /// # let mut os = DummyOs::new(mem);
    /// # let (dtb, virtual_base) = os.alloc_dtb(VIRT_MEM_SIZE, &[]);
    /// # let mut mem = os.into_inner();
    /// # let translator = x64::new_translator(dtb);
    /// let arch = x64::ARCH;
    ///
    /// // Translate a mapped address
    /// let res = translator.virt_to_phys(
    ///     &mut mem,
    ///     virtual_base,
    /// );
    ///
    /// assert!(res.is_ok());
    ///
    /// // Translate unmapped address
    /// let res = translator.virt_to_phys(
    ///     &mut mem,
    ///     virtual_base - 1,
    /// );
    ///
    /// assert!(res.is_err());
    ///
    /// ```
    fn virt_to_phys<T: PhysicalMemory>(
        &self,
        mem: &mut T,
        addr: Address,
    ) -> Result<PhysicalAddress> {
        let mut buf: [std::mem::MaybeUninit<u8>; 512] =
            unsafe { std::mem::MaybeUninit::uninit().assume_init() };
        let mut output = None;
        let success = &mut |elem: CTup3<PhysicalAddress, Address, _>| {
            if output.is_none() {
                output = Some(elem.0);
            }
            false
        };
        let mut output_err = None;
        let fail = &mut |elem: (Error, _)| {
            output_err = Some(elem.0);
            true
        };
        self.virt_to_phys_iter(
            mem,
            Some(CTup3::<_, _, umem>(addr, addr, 1)).into_iter(),
            &mut success.into(),
            &mut fail.into(),
            &mut buf,
        );
        output.map(Ok).unwrap_or_else(|| Err(output_err.unwrap()))
    }

    fn virt_to_phys_iter<
        T: PhysicalMemory + ?Sized,
        B: SplitAtIndex,
        VI: Iterator<Item = CTup3<Address, Address, B>>,
    >(
        &self,
        mem: &mut T,
        addrs: VI,
        out: &mut VtopOutputCallback<B>,
        out_fail: &mut VtopFailureCallback<B>,
        tmp_buf: &mut [std::mem::MaybeUninit<u8>],
    );

    fn translation_table_id(&self, address: Address) -> umem;

    fn arch(&self) -> ArchitectureObj;
}

pub type VtopOutputCallback<'a, B> = OpaqueCallback<'a, CTup3<PhysicalAddress, Address, B>>;
pub type VtopFailureCallback<'a, B> = OpaqueCallback<'a, (Error, CTup3<Address, Address, B>)>;