1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! Types and constants for handling acceleration.

use super::measurement::*;
use super::length;

/// The `Acceleration` struct can be used to deal with Accelerations in a common way.
/// Common metric and imperial units are supported.
///
/// # Example
///
/// ```
/// extern crate measurements;
/// use measurements::{Acceleration, Length, Speed};
/// use std::time::Duration;
///
/// fn main() {
///     // Standing quarter mile in 10.0 dead, at 120.0 mph
///     let track = Length::from_miles(0.25);
///     let finish = Speed::from_miles_per_hour(120.0);
///     let time = Duration::new(10, 0);
///     let accel: Acceleration = finish / time;
///     println!("You accelerated over {} at an average of {}", track, accel);
///}
/// ```
#[derive(Copy, Clone, Debug)]
pub struct Acceleration {
    meters_per_second_per_second: f64,
}

impl Acceleration {
    /// Create a new Acceleration from a floating point value in meters per second per second
    pub fn from_meters_per_second_per_second(meters_per_second_per_second: f64) -> Acceleration {
        Acceleration {
            meters_per_second_per_second: meters_per_second_per_second,
        }
    }

    /// Create a new Acceleration from a floating point value in metres per second per second
    pub fn from_metres_per_second_per_second(metres_per_second_per_second: f64) -> Acceleration {
        Acceleration::from_meters_per_second_per_second(metres_per_second_per_second)
    }

    /// Create a new Acceleration from a floating point value in feet per second per second
    pub fn from_feet_per_second_per_second(feet_per_second_per_second: f64) -> Acceleration {
        Acceleration::from_metres_per_second_per_second(
            feet_per_second_per_second / length::METER_FEET_FACTOR,
        )
    }

    /// Convert this Acceleration to a value in meters per second per second
    pub fn as_meters_per_second_per_second(&self) -> f64 {
        self.meters_per_second_per_second
    }

    /// Convert this Acceleration to a value in metres per second per second
    pub fn as_metres_per_second_per_second(&self) -> f64 {
        self.as_meters_per_second_per_second()
    }

    /// Convert this Acceleration to a value in feet per second per second
    pub fn as_feet_per_second_per_second(&self) -> f64 {
        self.meters_per_second_per_second * length::METER_FEET_FACTOR
    }
}

impl Measurement for Acceleration {
    fn as_base_units(&self) -> f64 {
        self.meters_per_second_per_second
    }

    fn from_base_units(units: f64) -> Self {
        Self::from_meters_per_second_per_second(units)
    }

    fn get_base_units_name(&self) -> &'static str {
        "m/s\u{00B2}"
    }
}

implement_measurement! { Acceleration }

#[cfg(test)]
mod test {

    use super::*;
    use test_utils::assert_almost_eq;
    use speed::Speed;

    // Metric
    #[test]
    fn speed_over_time() {
        let s1 = Speed::from_meters_per_second(10.0);
        let t1 = ::time::Duration::new(5, 0);
        let i1 = s1 / t1;
        let r1 = i1.as_meters_per_second_per_second();
        assert_almost_eq(r1, 2.0);
    }

    // Traits
    #[test]
    fn add() {
        let a = Acceleration::from_meters_per_second_per_second(2.0);
        let b = Acceleration::from_meters_per_second_per_second(4.0);
        let c = a + b;
        let d = b + a;
        assert_almost_eq(c.as_meters_per_second_per_second(), 6.0);
        assert_eq!(c, d);
    }

    #[test]
    fn sub() {
        let a = Acceleration::from_meters_per_second_per_second(2.0);
        let b = Acceleration::from_meters_per_second_per_second(4.0);
        let c = a - b;
        assert_almost_eq(c.as_meters_per_second_per_second(), -2.0);
    }

    #[test]
    fn mul() {
        let a = Acceleration::from_meters_per_second_per_second(3.0);
        let b = a * 2.0;
        let c = 2.0 * a;
        assert_almost_eq(b.as_meters_per_second_per_second(), 6.0);
        assert_eq!(b, c);
    }

    #[test]
    fn div() {
        let a = Acceleration::from_meters_per_second_per_second(2.0);
        let b = Acceleration::from_meters_per_second_per_second(4.0);
        let c = a / b;
        let d = a / 2.0;
        assert_almost_eq(c, 0.5);
        assert_almost_eq(d.as_meters_per_second_per_second(), 1.0);
    }

    #[test]
    fn eq() {
        let a = Acceleration::from_meters_per_second_per_second(2.0);
        let b = Acceleration::from_meters_per_second_per_second(2.0);
        assert_eq!(a == b, true);
    }

    #[test]
    fn neq() {
        let a = Acceleration::from_meters_per_second_per_second(2.0);
        let b = Acceleration::from_meters_per_second_per_second(4.0);
        assert_eq!(a == b, false);
    }

    #[test]
    fn cmp() {
        let a = Acceleration::from_meters_per_second_per_second(2.0);
        let b = Acceleration::from_meters_per_second_per_second(4.0);
        assert_eq!(a < b, true);
        assert_eq!(a <= b, true);
        assert_eq!(a > b, false);
        assert_eq!(a >= b, false);
    }
}