1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/// This module implements the "container" file format that `measureme` uses for
/// storing things on disk. The format supports storing three independent
/// streams of data: one for events, one for string data, and one for string
/// index data (in theory it could support an arbitrary number of separate
/// streams but three is all we need). The data of each stream is split into
/// "pages", where each page has a small header designating what kind of
/// data it is (i.e. event, string data, or string index), and the length of
/// the page.
///
/// Pages of different kinds can be arbitrarily interleaved. The headers allow
/// for reconstructing each of the streams later on. An example file might thus
/// look like this:
///
/// ```ignore
/// | file header | page (events) | page (string data) | page (events) | page (string index) |
/// ```
///
/// The exact encoding of a page is:
///
/// | byte slice              | contents                                |
/// |-------------------------|-----------------------------------------|
/// | &[0 .. 1]               | page tag                                |
/// | &[1 .. 5]               | page size as little endian u32          |
/// | &[5 .. (5 + page_size)] | page contents (exactly page_size bytes) |
///
/// A page is immediately followed by the next page, without any padding.
use parking_lot::Mutex;
use rustc_hash::FxHashMap;
use std::cmp::min;
use std::convert::TryInto;
use std::error::Error;
use std::fmt::Debug;
use std::fs;
use std::io::Write;
use std::sync::Arc;

const MAX_PAGE_SIZE: usize = 256 * 1024;

/// The number of bytes we consider enough to warrant their own page when
/// deciding whether to flush a partially full buffer. Actual pages may need
/// to be smaller, e.g. when writing the tail of the data stream.
const MIN_PAGE_SIZE: usize = MAX_PAGE_SIZE / 2;

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[repr(u8)]
pub enum PageTag {
    Events = 0,
    StringData = 1,
    StringIndex = 2,
}

impl std::convert::TryFrom<u8> for PageTag {
    type Error = String;

    fn try_from(value: u8) -> Result<Self, Self::Error> {
        match value {
            0 => Ok(PageTag::Events),
            1 => Ok(PageTag::StringData),
            2 => Ok(PageTag::StringIndex),
            _ => Err(format!("Could not convert byte `{}` to PageTag.", value)),
        }
    }
}

/// An address within a data stream. Each data stream has its own address space,
/// i.e. the first piece of data written to the events stream will have
/// `Addr(0)` and the first piece of data written to the string data stream
/// will *also* have `Addr(0)`.
//
// TODO: Evaluate if it makes sense to add a type tag to `Addr` in order to
//       prevent accidental use of `Addr` values with the wrong address space.
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub struct Addr(pub u32);

impl Addr {
    pub fn as_usize(self) -> usize {
        self.0 as usize
    }
}

#[derive(Debug)]
pub struct SerializationSink {
    shared_state: SharedState,
    data: Mutex<SerializationSinkInner>,
    page_tag: PageTag,
}

pub struct SerializationSinkBuilder(SharedState);

impl SerializationSinkBuilder {
    pub fn new_from_file(file: fs::File) -> Result<Self, Box<dyn Error + Send + Sync>> {
        Ok(Self(SharedState(Arc::new(Mutex::new(
            BackingStorage::File(file),
        )))))
    }

    pub fn new_in_memory() -> SerializationSinkBuilder {
        Self(SharedState(Arc::new(Mutex::new(BackingStorage::Memory(
            Vec::new(),
        )))))
    }

    pub fn new_sink(&self, page_tag: PageTag) -> SerializationSink {
        SerializationSink {
            data: Mutex::new(SerializationSinkInner {
                buffer: Vec::with_capacity(MAX_PAGE_SIZE),
                addr: 0,
            }),
            shared_state: self.0.clone(),
            page_tag,
        }
    }
}

/// The `BackingStorage` is what the data gets written to. Usually that is a
/// file but for testing purposes it can also be an in-memory vec of bytes.
#[derive(Debug)]
enum BackingStorage {
    File(fs::File),
    Memory(Vec<u8>),
}

impl Write for BackingStorage {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        match *self {
            BackingStorage::File(ref mut file) => file.write(buf),
            BackingStorage::Memory(ref mut vec) => vec.write(buf),
        }
    }

    fn flush(&mut self) -> std::io::Result<()> {
        match *self {
            BackingStorage::File(ref mut file) => file.flush(),
            BackingStorage::Memory(_) => {
                // Nothing to do
                Ok(())
            }
        }
    }
}

/// This struct allows to treat `SerializationSink` as `std::io::Write`.
pub struct StdWriteAdapter<'a>(&'a SerializationSink);

impl<'a> Write for StdWriteAdapter<'a> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        self.0.write_bytes_atomic(buf);
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        let mut data = self.0.data.lock();
        let SerializationSinkInner {
            ref mut buffer,
            addr: _,
        } = *data;

        // First flush the local buffer.
        self.0.flush(buffer);

        // Then flush the backing store.
        self.0.shared_state.0.lock().flush()?;

        Ok(())
    }
}

#[derive(Debug)]
struct SerializationSinkInner {
    buffer: Vec<u8>,
    addr: u32,
}

/// This state is shared between all `SerializationSink`s writing to the same
/// backing storage (e.g. the same file).
#[derive(Clone, Debug)]
struct SharedState(Arc<Mutex<BackingStorage>>);

impl SharedState {
    /// Copies out the contents of all pages with the given tag and
    /// concatenates them into a single byte vec. This method is only meant to
    /// be used for testing and will panic if the underlying backing storage is
    /// a file instead of in memory.
    fn copy_bytes_with_page_tag(&self, page_tag: PageTag) -> Vec<u8> {
        let data = self.0.lock();
        let data = match *data {
            BackingStorage::File(_) => panic!(),
            BackingStorage::Memory(ref data) => data,
        };

        split_streams(data).remove(&page_tag).unwrap_or(Vec::new())
    }
}

/// This function reconstructs the individual data streams from their paged
/// version.
///
/// For example, if `E` denotes the page header of an events page, `S` denotes
/// the header of a string data page, and lower case letters denote page
/// contents then a paged stream could look like:
///
/// ```ignore
/// s = Eabcd_Sopq_Eef_Eghi_Srst
/// ```
///
/// and `split_streams` would result in the following set of streams:
///
/// ```ignore
/// split_streams(s) = {
///     events: [abcdefghi],
///     string_data: [opqrst],
/// }
/// ```
pub fn split_streams(paged_data: &[u8]) -> FxHashMap<PageTag, Vec<u8>> {
    let mut result: FxHashMap<PageTag, Vec<u8>> = FxHashMap::default();

    let mut pos = 0;
    while pos < paged_data.len() {
        let tag = TryInto::try_into(paged_data[pos]).unwrap();
        let page_size =
            u32::from_le_bytes(paged_data[pos + 1..pos + 5].try_into().unwrap()) as usize;

        assert!(page_size > 0);

        result
            .entry(tag)
            .or_default()
            .extend_from_slice(&paged_data[pos + 5..pos + 5 + page_size]);

        pos += page_size + 5;
    }

    result
}

impl SerializationSink {
    /// Writes `bytes` as a single page to the shared backing storage. The
    /// method will first write the page header (consisting of the page tag and
    /// the number of bytes in the page) and then the page contents
    /// (i.e. `bytes`).
    fn write_page(&self, bytes: &[u8]) {
        if bytes.len() > 0 {
            // We explicitly don't assert `bytes.len() >= MIN_PAGE_SIZE` because
            // `MIN_PAGE_SIZE` is just a recommendation and the last page will
            // often be smaller than that.
            assert!(bytes.len() <= MAX_PAGE_SIZE);

            let mut file = self.shared_state.0.lock();

            file.write_all(&[self.page_tag as u8]).unwrap();

            let page_size: [u8; 4] = (bytes.len() as u32).to_le_bytes();
            file.write_all(&page_size).unwrap();
            file.write_all(&bytes[..]).unwrap();
        }
    }

    /// Flushes `buffer` by writing its contents as a new page to the backing
    /// storage and then clearing it.
    fn flush(&self, buffer: &mut Vec<u8>) {
        self.write_page(&buffer[..]);
        buffer.clear();
    }

    /// Creates a copy of all data written so far. This method is meant to be
    /// used for writing unit tests. It will panic if the underlying
    /// `BackingStorage` is a file.
    pub fn into_bytes(mut self) -> Vec<u8> {
        // Swap out the contains of `self` with something that can safely be
        // dropped without side effects.
        let mut data = Mutex::new(SerializationSinkInner {
            buffer: Vec::new(),
            addr: 0,
        });
        std::mem::swap(&mut self.data, &mut data);

        // Extract the data from the mutex.
        let SerializationSinkInner {
            ref mut buffer,
            addr: _,
        } = data.into_inner();

        // Make sure we write the current contents of the buffer to the
        // backing storage before proceeding.
        self.flush(buffer);

        self.shared_state.copy_bytes_with_page_tag(self.page_tag)
    }

    /// Atomically writes `num_bytes` of data to this `SerializationSink`.
    /// Atomic means the data is guaranteed to be written as a contiguous range
    /// of bytes.
    ///
    /// The buffer provided to the `write` callback is guaranteed to be of size
    /// `num_bytes` and `write` is supposed to completely fill it with the data
    /// to be written.
    ///
    /// The return value is the address of the data written and can be used to
    /// refer to the data later on.
    pub fn write_atomic<W>(&self, num_bytes: usize, write: W) -> Addr
    where
        W: FnOnce(&mut [u8]),
    {
        if num_bytes > MAX_PAGE_SIZE {
            let mut bytes = vec![0u8; num_bytes];
            write(&mut bytes[..]);
            return self.write_bytes_atomic(&bytes[..]);
        }

        let mut data = self.data.lock();
        let SerializationSinkInner {
            ref mut buffer,
            ref mut addr,
        } = *data;

        if buffer.len() + num_bytes > MAX_PAGE_SIZE {
            self.flush(buffer);
            assert!(buffer.is_empty());
        }

        let curr_addr = *addr;

        let buf_start = buffer.len();
        let buf_end = buf_start + num_bytes;
        buffer.resize(buf_end, 0u8);
        write(&mut buffer[buf_start..buf_end]);

        *addr += num_bytes as u32;

        Addr(curr_addr)
    }

    /// Atomically writes the data in `bytes` to this `SerializationSink`.
    /// Atomic means the data is guaranteed to be written as a contiguous range
    /// of bytes.
    ///
    /// This method may perform better than `write_atomic` because it may be
    /// able to skip the sink's internal buffer. Use this method if the data to
    /// be written is already available as a `&[u8]`.
    ///
    /// The return value is the address of the data written and can be used to
    /// refer to the data later on.
    pub fn write_bytes_atomic(&self, bytes: &[u8]) -> Addr {
        // For "small" data we go to the buffered version immediately.
        if bytes.len() <= 128 {
            return self.write_atomic(bytes.len(), |sink| {
                sink.copy_from_slice(bytes);
            });
        }

        let mut data = self.data.lock();
        let SerializationSinkInner {
            ref mut buffer,
            ref mut addr,
        } = *data;

        let curr_addr = Addr(*addr);
        *addr += bytes.len() as u32;

        let mut bytes_left = bytes;

        // Do we have too little data in the buffer? If so, fill up the buffer
        // to the minimum page size.
        if buffer.len() < MIN_PAGE_SIZE {
            let num_bytes_to_take = min(MIN_PAGE_SIZE - buffer.len(), bytes_left.len());
            buffer.extend_from_slice(&bytes_left[..num_bytes_to_take]);
            bytes_left = &bytes_left[num_bytes_to_take..];
        }

        if bytes_left.is_empty() {
            return curr_addr;
        }

        // Make sure we flush the buffer before writing out any other pages.
        self.flush(buffer);

        for chunk in bytes_left.chunks(MAX_PAGE_SIZE) {
            if chunk.len() == MAX_PAGE_SIZE {
                // This chunk has the maximum size. It might or might not be the
                // last one. In either case we want to write it to disk
                // immediately because there is no reason to copy it to the
                // buffer first.
                self.write_page(chunk);
            } else {
                // This chunk is less than the chunk size that we requested, so
                // it must be the last one. If it is big enough to warrant its
                // own page, we write it to disk immediately. Otherwise, we copy
                // it to the buffer.
                if chunk.len() >= MIN_PAGE_SIZE {
                    self.write_page(chunk);
                } else {
                    debug_assert!(buffer.is_empty());
                    buffer.extend_from_slice(chunk);
                }
            }
        }

        curr_addr
    }

    pub fn as_std_write<'a>(&'a self) -> impl Write + 'a {
        StdWriteAdapter(self)
    }
}

impl Drop for SerializationSink {
    fn drop(&mut self) {
        let mut data = self.data.lock();
        let SerializationSinkInner {
            ref mut buffer,
            addr: _,
        } = *data;

        self.flush(buffer);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // This function writes `chunk_count` byte-slices of size `chunk_size` to
    // three `SerializationSinks` that all map to the same underlying stream,
    // so we get interleaved pages with different tags.
    // It then extracts the data out again and asserts that it is the same as
    // has been written.
    fn test_roundtrip<W>(chunk_size: usize, chunk_count: usize, write: W)
    where
        W: Fn(&SerializationSink, &[u8]) -> Addr,
    {
        let sink_builder = SerializationSinkBuilder::new_in_memory();
        let tags = [PageTag::Events, PageTag::StringData, PageTag::StringIndex];
        let expected_chunk: Vec<u8> = (0..chunk_size).map(|x| (x % 239) as u8).collect();

        {
            let sinks: Vec<SerializationSink> =
                tags.iter().map(|&tag| sink_builder.new_sink(tag)).collect();

            for chunk_index in 0..chunk_count {
                let expected_addr = Addr((chunk_index * chunk_size) as u32);
                for sink in sinks.iter() {
                    assert_eq!(write(sink, &expected_chunk[..]), expected_addr);
                }
            }
        }

        let streams: Vec<Vec<u8>> = tags
            .iter()
            .map(|&tag| sink_builder.0.copy_bytes_with_page_tag(tag))
            .collect();

        for stream in streams {
            for chunk in stream.chunks(chunk_size) {
                assert_eq!(chunk, expected_chunk);
            }
        }
    }

    fn write_closure(sink: &SerializationSink, bytes: &[u8]) -> Addr {
        sink.write_atomic(bytes.len(), |dest| dest.copy_from_slice(bytes))
    }

    fn write_slice(sink: &SerializationSink, bytes: &[u8]) -> Addr {
        sink.write_bytes_atomic(bytes)
    }

    // Creates two roundtrip tests, one using `SerializationSink::write_atomic`
    // and one using `SerializationSink::write_bytes_atomic`.
    macro_rules! mk_roundtrip_test {
        ($name:ident, $chunk_size:expr, $chunk_count:expr) => {
            mod $name {
                use super::*;

                #[test]
                fn write_atomic() {
                    test_roundtrip($chunk_size, $chunk_count, write_closure);
                }

                #[test]
                fn write_bytes_atomic() {
                    test_roundtrip($chunk_size, $chunk_count, write_slice);
                }
            }
        };
    }

    mk_roundtrip_test!(small_data, 10, (90 * MAX_PAGE_SIZE) / 100);
    mk_roundtrip_test!(huge_data, MAX_PAGE_SIZE * 10, 5);

    mk_roundtrip_test!(exactly_max_page_size, MAX_PAGE_SIZE, 10);
    mk_roundtrip_test!(max_page_size_plus_one, MAX_PAGE_SIZE + 1, 10);
    mk_roundtrip_test!(max_page_size_minus_one, MAX_PAGE_SIZE - 1, 10);

    mk_roundtrip_test!(exactly_min_page_size, MIN_PAGE_SIZE, 10);
    mk_roundtrip_test!(min_page_size_plus_one, MIN_PAGE_SIZE + 1, 10);
    mk_roundtrip_test!(min_page_size_minus_one, MIN_PAGE_SIZE - 1, 10);
}