1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
use crate::stringtable::StringId;

/// `RawEvent` is how events are stored on-disk. If you change this struct,
/// make sure that you increment `file_header::CURRENT_FILE_FORMAT_VERSION`.
#[derive(Eq, PartialEq, Debug)]
#[repr(C)]
pub struct RawEvent {
    pub event_kind: StringId,
    pub event_id: StringId,
    pub thread_id: u32,

    // The following 96 bits store the start and the end timestamp, using
    // 48 bits for each.
    pub start_time_lower: u32,
    pub end_time_lower: u32,
    pub start_and_end_upper: u32,
}

/// `RawEvents` that have an end time stamp with this value are instant events.
const INSTANT_TIMESTAMP_MARKER: u64 = 0xFFFF_FFFF_FFFF;

/// The max instant timestamp we can represent with the 48 bits available.
pub const MAX_INSTANT_TIMESTAMP: u64 = 0xFFFF_FFFF_FFFF;

/// The max interval timestamp we can represent with the 48 bits available.
/// The highest value is reserved for the `INSTANT_TIMESTAMP_MARKER`.
pub const MAX_INTERVAL_TIMESTAMP: u64 = INSTANT_TIMESTAMP_MARKER - 1;

impl RawEvent {
    #[inline]
    pub fn new_interval(
        event_kind: StringId,
        event_id: StringId,
        thread_id: u32,
        start_nanos: u64,
        end_nanos: u64,
    ) -> RawEvent {
        assert!(start_nanos <= end_nanos);
        assert!(end_nanos <= MAX_INTERVAL_TIMESTAMP);

        let start_time_lower = start_nanos as u32;
        let end_time_lower = end_nanos as u32;

        let start_time_upper = (start_nanos >> 16) as u32 & 0xFFFF_0000;
        let end_time_upper = (end_nanos >> 32) as u32;

        let start_and_end_upper = start_time_upper | end_time_upper;

        RawEvent {
            event_kind,
            event_id,
            thread_id,
            start_time_lower,
            end_time_lower,
            start_and_end_upper,
        }
    }

    #[inline]
    pub fn new_instant(
        event_kind: StringId,
        event_id: StringId,
        thread_id: u32,
        timestamp_ns: u64,
    ) -> RawEvent {
        assert!(timestamp_ns <= MAX_INSTANT_TIMESTAMP);

        let start_time_lower = timestamp_ns as u32;
        let end_time_lower = 0xFFFF_FFFF;

        let start_time_upper = (timestamp_ns >> 16) as u32;
        let start_and_end_upper = start_time_upper | 0x0000_FFFF;

        RawEvent {
            event_kind,
            event_id,
            thread_id,
            start_time_lower,
            end_time_lower,
            start_and_end_upper,
        }
    }

    #[inline]
    pub fn start_nanos(&self) -> u64 {
        self.start_time_lower as u64 | (((self.start_and_end_upper & 0xFFFF_0000) as u64) << 16)
    }

    #[inline]
    pub fn end_nanos(&self) -> u64 {
        self.end_time_lower as u64 | (((self.start_and_end_upper & 0x0000_FFFF) as u64) << 32)
    }

    #[inline]
    pub fn is_instant(&self) -> bool {
        self.end_nanos() == INSTANT_TIMESTAMP_MARKER
    }

    #[inline]
    pub fn serialize(&self, bytes: &mut [u8]) {
        assert!(bytes.len() == std::mem::size_of::<RawEvent>());

        #[cfg(target_endian = "little")]
        {
            let raw_event_bytes: &[u8] = unsafe {
                std::slice::from_raw_parts(
                    self as *const _ as *const u8,
                    std::mem::size_of::<RawEvent>(),
                )
            };

            bytes.copy_from_slice(raw_event_bytes);
        }

        #[cfg(target_endian = "big")]
        {
            // We always emit data as little endian, which we have to do
            // manually on big endian targets.
            use byteorder::{LittleEndian, ByteOrder};

            LittleEndian::write_u32(&mut bytes[0..], self.event_kind.as_u32());
            LittleEndian::write_u32(&mut bytes[4..], self.event_id.as_u32());
            LittleEndian::write_u32(&mut bytes[8..], self.thread_id);
            LittleEndian::write_u32(&mut bytes[12..], self.start_time_lower);
            LittleEndian::write_u32(&mut bytes[16..], self.end_time_lower);
            LittleEndian::write_u32(&mut bytes[20..], self.start_and_end_upper);
        }
    }

    #[inline]
    pub fn deserialize(bytes: &[u8]) -> RawEvent {
        assert!(bytes.len() == std::mem::size_of::<RawEvent>());

        #[cfg(target_endian = "little")]
        {
            let mut raw_event = RawEvent::default();
            unsafe {
                let raw_event = std::slice::from_raw_parts_mut(
                    &mut raw_event as *mut RawEvent as *mut u8,
                    std::mem::size_of::<RawEvent>(),
                );
                raw_event.copy_from_slice(bytes);
            };
            raw_event
        }

        #[cfg(target_endian = "big")]
        {
            use byteorder::{LittleEndian, ByteOrder};
            RawEvent {
                event_kind: StringId::reserved(LittleEndian::read_u32(&bytes[0..])),
                event_id: StringId::reserved(LittleEndian::read_u32(&bytes[4..])),
                thread_id: LittleEndian::read_u32(&bytes[8..]),
                start_time_lower: LittleEndian::read_u32(&bytes[12..]),
                end_time_lower: LittleEndian::read_u32(&bytes[16..]),
                start_and_end_upper: LittleEndian::read_u32(&bytes[20..]),
            }
        }
    }
}

impl Default for RawEvent {
    fn default() -> Self {
        RawEvent {
            event_kind: StringId::reserved(0),
            event_id: StringId::reserved(0),
            thread_id: 0,
            start_time_lower: 0,
            end_time_lower: 0,
            start_and_end_upper: 0,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn raw_event_has_expected_size() {
        // A test case to prevent accidental regressions of RawEvent's size.
        assert_eq!(std::mem::size_of::<RawEvent>(), 24);
    }

    #[test]
    fn is_instant() {
        assert!(
            RawEvent::new_instant(StringId::reserved(0), StringId::reserved(0), 987, 0,)
                .is_instant()
        );

        assert!(RawEvent::new_instant(
            StringId::reserved(0),
            StringId::reserved(0),
            987,
            MAX_INSTANT_TIMESTAMP,
        )
        .is_instant());

        assert!(!RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            987,
            0,
            MAX_INTERVAL_TIMESTAMP,
        )
        .is_instant());
    }

    #[test]
    #[should_panic]
    fn invalid_instant_timestamp() {
        let _ = RawEvent::new_instant(
            StringId::reserved(0),
            StringId::reserved(0),
            123,
            // timestamp too large
            MAX_INSTANT_TIMESTAMP + 1,
        );
    }

    #[test]
    #[should_panic]
    fn invalid_start_timestamp() {
        let _ = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            123,
            // start timestamp too large
            MAX_INTERVAL_TIMESTAMP + 1,
            MAX_INTERVAL_TIMESTAMP + 1,
        );
    }

    #[test]
    #[should_panic]
    fn invalid_end_timestamp() {
        let _ = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            123,
            0,
            // end timestamp too large
            MAX_INTERVAL_TIMESTAMP + 3,
        );
    }

    #[test]
    #[should_panic]
    fn invalid_end_timestamp2() {
        let _ = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            123,
            0,
            INSTANT_TIMESTAMP_MARKER,
        );
    }

    #[test]
    #[should_panic]
    fn start_greater_than_end_timestamp() {
        let _ = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            123,
            // start timestamp greater than end timestamp
            1,
            0,
        );
    }

    #[test]
    fn start_equal_to_end_timestamp() {
        // This is allowed, make sure we don't panic
        let _ = RawEvent::new_interval(StringId::reserved(0), StringId::reserved(0), 123, 1, 1);
    }

    #[test]
    fn interval_timestamp_decoding() {
        // Check the upper limits
        let e = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            1234,
            MAX_INTERVAL_TIMESTAMP,
            MAX_INTERVAL_TIMESTAMP,
        );

        assert_eq!(e.start_nanos(), MAX_INTERVAL_TIMESTAMP);
        assert_eq!(e.end_nanos(), MAX_INTERVAL_TIMESTAMP);

        // Check the lower limits
        let e = RawEvent::new_interval(StringId::reserved(0), StringId::reserved(0), 1234, 0, 0);

        assert_eq!(e.start_nanos(), 0);
        assert_eq!(e.end_nanos(), 0);

        // Check that end does not bleed into start
        let e = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            1234,
            0,
            MAX_INTERVAL_TIMESTAMP,
        );

        assert_eq!(e.start_nanos(), 0);
        assert_eq!(e.end_nanos(), MAX_INTERVAL_TIMESTAMP);

        // Test some random values
        let e = RawEvent::new_interval(
            StringId::reserved(0),
            StringId::reserved(0),
            1234,
            0x1234567890,
            0x1234567890A,
        );

        assert_eq!(e.start_nanos(), 0x1234567890);
        assert_eq!(e.end_nanos(), 0x1234567890A);
    }

    #[test]
    fn instant_timestamp_decoding() {
        assert_eq!(
            RawEvent::new_instant(StringId::reserved(0), StringId::reserved(0), 987, 0,)
                .start_nanos(),
            0
        );

        assert_eq!(
            RawEvent::new_instant(
                StringId::reserved(0),
                StringId::reserved(0),
                987,
                MAX_INSTANT_TIMESTAMP,
            )
            .start_nanos(),
            MAX_INSTANT_TIMESTAMP
        );
    }
}