1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
//! A platform agnostic Rust driver for the MCP3425 (and newer variants
//! MCP3426/MCP3427/MCP3428 as well), based on the
//! [`embedded-hal`](https://github.com/rust-embedded/embedded-hal) traits.
//!
//! ## The Device
//!
//! The Microchip MCP3425 is a low-current 16-bit analog-to-digital converter.
//! The device has an I²C interface and an on-board ±2048mV reference. For more
//! information, see the
//! [datasheet](https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/22072b.pdf).
//!
//! Variants [MCP3426/7/8](https://ww1.microchip.com/downloads/en/DeviceDoc/22226a.pdf)
//! are very similar, but support multiple input channels. They are supported as
//! well, but require to enable one of the following Cargo features:
//!
//! - `dual_channel` for MCP3426/7
//! - `quad_channel` for MCP3428
//!
//! ## Cargo Features
//!
//! The following feature flags exists:
//!
//! - `dual_channel` for dual-channel support (MCP3426/7/8)
//! - `quad_channel` for dual-channel support (MCP3428)
//! - `measurements`: Use the
//! [measurements](https://github.com/thejpster/rust-measurements) crate
//! to represent voltages instead of the custom
//! [`Voltage`](https://docs.rs/mcp3425/*/mcp3425/struct.Voltage.html) wrapper
//!
//! ## Usage
//!
//! ### Instantiating
//!
//! Import this crate and an `embedded_hal` implementation (e.g.
//! [linux-embedded-hal](https://github.com/rust-embedded/linux-embedded-hal)).
//! Then instantiate the device in either
//! [`ContinuousMode`](struct.ContinuousMode.html) or
//! [`OneShotMode`](struct.OneShotMode.html):
//!
//! ```no_run
//! # extern crate linux_embedded_hal;
//! use linux_embedded_hal::{Delay, I2cdev};
//! use mcp3425::{MCP3425, Config, Resolution, Gain, Error, OneShotMode};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = 0x68;
//! let mut adc = MCP3425::new(dev, address, Delay, OneShotMode);
//! # }
//! ```
//!
//! (You can also use the shortcut functions
//! [`oneshot`](struct.MCP3425.html#method.oneshot) or
//! [`continuous`](struct.MCP3425.html#method.continuous) to create instances
//! of the [`MCP3425`](struct.MCP3425.html) type without having to specify the
//! type as parameter.)
//!
//! ### Configuration
//!
//! You can choose the conversion resolution / sample rate and the PGA gain
//! with a [`Config`](struct.Config.html) object.
//!
//! Use the methods starting with `with_` to create a (side-effect free) new
//! instance of the configuration where the specified setting has been
//! replaced.
//!
//! ```no_run
//! # use mcp3425::{Config, Resolution, Gain};
//! # fn main() {
//! use mcp3425::Channel;
//! let config = Config::default()
//! .with_resolution(Resolution::Bits12Sps240)
//! .with_gain(Gain::Gain1);
//! let high_res = config.with_resolution(Resolution::Bits16Sps15);
//! let high_gain = high_res.with_gain(Gain::Gain8);
//! # }
//! ```
//!
//! Note: If you enable the `dual_channel` or `quad_channel` Cargo features,
//! you can also use the method `.with_channel(...)` on the `Config` struct (if
//! your model supports multiple input channels).
//!
//! ### Measurements
//!
//! **One-Shot**
//!
//! You can trigger a one-shot measurement:
//!
//! ```no_run
//! # extern crate linux_embedded_hal;
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use mcp3425::{MCP3425, Config, Resolution, Gain, Error};
//! # fn main() {
//! # use mcp3425::Channel;
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let address = 0x68;
//! let mut adc = MCP3425::oneshot(dev, address, Delay);
//! let config = Config::default();
//! match adc.measure(&config) {
//! Ok(voltage) => println!("ADC measured {} mV", voltage.as_millivolts()),
//! Err(Error::I2c(e)) => println!("An I2C error happened: {}", e),
//! Err(Error::VoltageTooHigh) => println!("Voltage is too high to measure"),
//! Err(Error::VoltageTooLow) => println!("Voltage is too low to measure"),
//! Err(Error::NotReady) => println!("Measurement not yet ready. This is a driver bug."),
//! Err(Error::NotInitialized) => unreachable!(),
//! }
//! # }
//! ```
//!
//! As you can see, the saturation values are automatically converted to
//! proper errors.
//!
//! **Continuous**
//!
//! You can also configure the ADC in continuous mode:
//!
//! ```no_run
//! # extern crate linux_embedded_hal;
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use mcp3425::{MCP3425, Config, Resolution, Gain, Error};
//! # fn main() {
//! # use mcp3425::Channel;
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let address = 0x68;
//! let mut adc = MCP3425::continuous(dev, address, Delay);
//! let config = Config::default();
//! adc.set_config(&config).unwrap();
//! match adc.read_measurement() {
//! Ok(voltage) => println!("ADC measured {} mV", voltage.as_millivolts()),
//! Err(Error::I2c(e)) => println!("An I2C error happened: {}", e),
//! Err(Error::VoltageTooHigh) => println!("Voltage is too high to measure"),
//! Err(Error::VoltageTooLow) => println!("Voltage is too low to measure"),
//! Err(Error::NotReady) => println!("Measurement not yet ready. Polling too fast?"),
//! Err(Error::NotInitialized) => println!("You forgot to call .set_config"),
//! }
//! # }
//! ```
#![no_std]
#![deny(missing_docs)]
#[macro_use]
extern crate bitflags;
use byteorder::{BigEndian, ByteOrder};
use embedded_hal::blocking::{
delay::DelayMs,
i2c::{Read, Write, WriteRead},
};
#[cfg(feature = "measurements")]
extern crate measurements;
#[cfg(feature = "measurements")]
use measurements::voltage::Voltage;
/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
/// I2C bus error
I2c(E),
/// Voltage is too high to be measured.
VoltageTooHigh,
/// Voltage is too low to be measured.
VoltageTooLow,
/// A measurement in continuous mode has been triggered without previously
/// writing the configuration to the device.
NotInitialized,
/// A measurement returned a stale result.
///
/// In continuous mode, this can happen if you poll faster than the sample
/// rate. See datasheet section 5.1.1 for more details.
///
/// In one-shot mode, this is probably a timing bug that should be reported to
/// <https://github.com/dbrgn/mcp3425-rs/issues/>!
///
NotReady,
}
bitflags! {
struct ConfigRegister: u8 {
const NOT_READY = 0b10000000;
const MODE = 0b00010000;
const SAMPLE_RATE_H = 0b00001000;
const SAMPLE_RATE_L = 0b00000100;
const GAIN_H = 0b00000010;
const GAIN_L = 0b00000001;
}
}
impl ConfigRegister {
fn is_ready(&self) -> bool {
!self.contains(ConfigRegister::NOT_READY)
}
}
/// ADC reference voltage: +-2048mV
const REF_MILLIVOLTS: i16 = 2048;
/// The two conversion mode structs implement this trait.
///
/// This allows the `MCP3425` instance to be generic over the conversion mode.
pub trait ConversionMode {
/// Return the bitmask for this conversion mode
fn bits(&self) -> u8;
}
/// Use the MCP3425 in One-Shot mode.
pub struct OneShotMode;
impl ConversionMode for OneShotMode {
fn bits(&self) -> u8 {
0b00000000
}
}
/// Use the MCP3425 in Continuous Conversion mode.
pub struct ContinuousMode;
impl ConversionMode for ContinuousMode {
fn bits(&self) -> u8 {
0b00010000
}
}
/// Conversion bit resolution and sample rate
///
/// * 15 SPS -> 16 bits
/// * 60 SPS -> 14 bits
/// * 240 SPS -> 12 bits
///
/// Defaults to 12 bits / 240 SPS (`Bits12Sps240`),
/// matching the power-on defaults of the device.
#[allow(dead_code)]
#[derive(Debug, Copy, Clone)]
pub enum Resolution {
/// 16 bits / 15 SPS. This allows you to measure voltage in 62.5 µV steps.
Bits16Sps15 = 0b00001000,
/// 14 bits / 60 SPS. This allows you to measure voltage in 250 µV steps.
Bits14Sps60 = 0b00000100,
/// 12 bits / 240 SPS. This allows you to measure voltage in 1 mV steps.
Bits12Sps240 = 0b00000000,
}
impl Resolution {
/// Return the bitmask for this sample rate.
pub fn bits(&self) -> u8 {
*self as u8
}
/// Return the number of bits of accuracy this sample rate gives you.
pub fn res_bits(&self) -> u8 {
match *self {
Resolution::Bits16Sps15 => 16,
Resolution::Bits14Sps60 => 14,
Resolution::Bits12Sps240 => 12,
}
}
/// Return the maximum output code.
pub fn max(&self) -> i16 {
match *self {
Resolution::Bits16Sps15 => 32767,
Resolution::Bits14Sps60 => 8191,
Resolution::Bits12Sps240 => 2047,
}
}
/// Return the minimum output code.
pub fn min(&self) -> i16 {
match *self {
Resolution::Bits16Sps15 => -32768,
Resolution::Bits14Sps60 => -8192,
Resolution::Bits12Sps240 => -2048,
}
}
}
impl Default for Resolution {
/// Default implementation matching the power-on defaults of the device.
fn default() -> Self {
Resolution::Bits12Sps240
}
}
/// Programmable gain amplifier (PGA)
///
/// Defaults to no amplification (`Gain1`),
/// matching the power-on defaults of the device.
#[allow(dead_code)]
#[derive(Debug, Copy, Clone)]
pub enum Gain {
/// Amplification factor 1.
Gain1 = 0b00000000,
/// Amplification factor 2.
Gain2 = 0b00000001,
/// Amplification factor 4.
Gain4 = 0b00000010,
/// Amplification factor 8.
Gain8 = 0b00000011,
}
impl Gain {
/// Return the bitmask for this gain configuration.
pub fn bits(&self) -> u8 {
*self as u8
}
}
impl Default for Gain {
/// Default implementation matching the power-on defaults of the device.
fn default() -> Self {
Gain::Gain1
}
}
/// Selected ADC channel
///
/// Defaults to channel 1.
#[derive(Copy, Clone, Debug)]
pub enum Channel {
/// First channel (Default)
Channel1 = 0b0000_0000,
/// Second channel
///
/// Note: Only supported by MCP3426/7/8, and if the `dual_channel` or
/// `quad_channel` cargo feature is enabled.
#[cfg(any(feature = "dual_channel", feature = "quad_channel", doc))]
Channel2 = 0b0010_0000,
/// Third channel
///
/// Note: Only supported by MCP3428, and if the `quad_channel` cargo
/// feature is enabled.
#[cfg(any(feature = "quad_channel", doc))]
Channel3 = 0b0100_0000,
/// Fourth channel
///
/// Note: Only supported by MCP3428, and if the `quad_channel` cargo
/// feature is enabled.
#[cfg(any(feature = "quad_channel", doc))]
Channel4 = 0b0110_0000,
}
impl Default for Channel {
fn default() -> Self {
Self::Channel1
}
}
impl Channel {
/// Return the bitmask for this channel configuration.
pub fn bits(&self) -> u8 {
*self as u8
}
}
/// Device configuration: Resolution, gain and input channel.
///
/// To instantiate this struct, use the `Default` implementation:
///
/// ```
/// # use mcp3425::{Config, Resolution, Gain};
/// let config = Config::default()
/// .with_resolution(Resolution::Bits14Sps60)
/// .with_gain(Gain::Gain2);
/// ```
///
/// Default values:
///
/// - Resolution: Bits12Sps240
/// - Gain: Gain1
/// - Channel: Channel1
///
/// Note: Creating and changing this instance does not have an immediate effect
/// on the device. It is only written when a measurement is triggered, or when
/// writing config explicitly with
/// [`set_config`](struct.MCP3425.html#method.set_config).
#[derive(Debug, Default, Copy, Clone)]
pub struct Config {
/// Conversion bit resolution and sample rate.
pub resolution: Resolution,
/// Programmable gain amplifier (PGA).
pub gain: Gain,
/// Selected input channel
pub channel: Channel,
}
impl Config {
/// Create a new configuration where the resolution has been replaced
/// with the specified value.
pub fn with_resolution(&self, resolution: Resolution) -> Self {
Config {
resolution,
gain: self.gain,
channel: self.channel,
}
}
/// Create a new configuration where the gain has been replaced
/// with the specified value.
pub fn with_gain(&self, gain: Gain) -> Self {
Config {
resolution: self.resolution,
gain,
channel: self.channel,
}
}
/// Create a new configuration where the channel has been replaced
/// with the specified value.
#[cfg(any(feature = "dual_channel", feature = "quad_channel", doc))]
pub fn with_channel(&self, channel: Channel) -> Self {
Config {
resolution: self.resolution,
gain: self.gain,
channel,
}
}
/// Return the bitmask for the combined configuration values.
fn bits(&self) -> u8 {
self.channel.bits() | self.resolution.bits() | self.gain.bits()
}
}
/// A voltage measurement.
#[cfg(not(feature = "measurements"))]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Voltage {
millivolts: i16,
}
#[cfg(not(feature = "measurements"))]
impl Voltage {
/// Create a new `Voltage` instance from a millivolt measurement.
pub fn from_millivolts(millivolts: i16) -> Self {
Self { millivolts }
}
/// Return the voltage in millivolts.
pub fn as_millivolts(&self) -> i16 {
self.millivolts
}
/// Return the voltage in volts.
pub fn as_volts(&self) -> f32 {
self.millivolts as f32 / 1000.0
}
}
/// Driver for the MCP3425 ADC
#[derive(Debug, Default)]
pub struct MCP3425<I2C, D, M> {
/// The concrete I²C device implementation.
i2c: I2C,
/// The I²C device address.
address: u8,
/// The concrete Delay implementation.
delay: D,
/// The ADC conversion mode.
mode: M,
/// The configuration being used by the last measurement.
config: Option<Config>,
}
impl<I2C, D, E, M> MCP3425<I2C, D, M>
where
I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
D: DelayMs<u8>,
M: ConversionMode,
{
/// Initialize the MCP3425 driver.
///
/// This constructor is side-effect free, so it will not write any
/// configuration to the device until a first measurement is triggered.
pub fn new(i2c: I2C, address: u8, delay: D, mode: M) -> Self {
MCP3425 {
i2c,
address,
delay,
mode,
config: None,
}
}
/// Read an i16 and the configuration register from the device.
fn read_i16_and_config(&mut self) -> Result<(i16, ConfigRegister), Error<E>> {
let mut buf = [0, 0, 0];
self.i2c.read(self.address, &mut buf).map_err(Error::I2c)?;
let measurement = BigEndian::read_i16(&buf[0..2]);
let config_reg = ConfigRegister::from_bits_truncate(buf[2]);
Ok((measurement, config_reg))
}
/// Calculate the voltage for the measurement result at the specified sample rate.
///
/// If the value is a saturation value, an error is returned.
fn calculate_voltage(
&self,
measurement: i16,
resolution: &Resolution,
) -> Result<Voltage, Error<E>> {
// Handle saturation / out of range values
if measurement == resolution.max() {
return Err(Error::VoltageTooHigh);
} else if measurement == resolution.min() {
return Err(Error::VoltageTooLow);
}
let converted =
measurement as i32 * (REF_MILLIVOLTS * 2) as i32 / (1 << resolution.res_bits()) as i32;
// The "allow" annotation is needed because there are different Voltage
// types, depending on the build flags.
#[allow(clippy::useless_conversion)]
Ok(Voltage::from_millivolts((converted as i16).into()))
}
}
impl<I2C, D, E> MCP3425<I2C, D, OneShotMode>
where
I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
D: DelayMs<u8>,
{
/// Initialize the MCP3425 driver in One-Shot mode.
///
/// This constructor is side-effect free, so it will not write any
/// configuration to the device until a first measurement is triggered.
pub fn oneshot(i2c: I2C, address: u8, delay: D) -> Self {
MCP3425 {
i2c,
address,
delay,
mode: OneShotMode,
config: None,
}
}
/// Change the conversion mode to continuous.
///
/// This conversion is side-effect free, so it will not write any
/// configuration to the device until
/// [`set_config`](struct.MCP3425.html#method.set_config) is called.
pub fn into_continuous(self) -> MCP3425<I2C, D, ContinuousMode> {
MCP3425::continuous(self.i2c, self.address, self.delay)
}
/// Do a one-shot voltage measurement.
///
/// Return the result in millivolts.
pub fn measure(&mut self, config: &Config) -> Result<Voltage, Error<E>> {
let command = ConfigRegister::NOT_READY.bits() | self.mode.bits() | config.bits();
// Send command
self.i2c
.write(self.address, &[command])
.map_err(Error::I2c)?;
// Determine time to wait for the conversion to finish.
// Values found by experimentation, these do not seem to be specified
// in the datasheet.
let sleep_ms = match config.resolution {
Resolution::Bits12Sps240 => 4,
Resolution::Bits14Sps60 => 15,
Resolution::Bits16Sps15 => 57,
};
self.delay.delay_ms(sleep_ms + 2); // Add two additional milliseconds as safety margin
// Read result
let (measurement, config_reg) = self.read_i16_and_config()?;
// Make sure that the delay was sufficient
if !config_reg.is_ready() {
return Err(Error::NotReady);
}
// Calculate voltage from raw value
let voltage = self.calculate_voltage(measurement, &config.resolution)?;
Ok(voltage)
}
}
impl<I2C, D, E> MCP3425<I2C, D, ContinuousMode>
where
I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
D: DelayMs<u8>,
{
/// Initialize the MCP3425 driver in Continuous Measurement mode.
///
/// This constructor is side-effect free, so it will not write any
/// configuration to the device until a first measurement is triggered.
pub fn continuous(i2c: I2C, address: u8, delay: D) -> Self {
MCP3425 {
i2c,
address,
delay,
mode: ContinuousMode,
config: None,
}
}
/// Change the conversion mode to one-shot.
///
/// This conversion is side-effect free, so it will not write any
/// configuration to the device until a first one-shot measurement is
/// triggered.
pub fn into_oneshot(self) -> MCP3425<I2C, D, OneShotMode> {
MCP3425::oneshot(self.i2c, self.address, self.delay)
}
/// Write the specified configuration to the device and block until the
/// first measurement is ready.
///
/// The wait-for-measurement logic is implemented with polling, since there
/// are no non-blocking `embedded_hal` traits yet.
///
/// Note: Since the wait-until-ready logic needs to read the data register,
/// when reading the measurement immediately after setting the
/// configuration, that measurement will be returned as `NotFresh`.
pub fn set_config(&mut self, config: &Config) -> Result<(), Error<E>> {
// Set configuration
let command = self.mode.bits() | config.bits();
self.i2c
.write(self.address, &[command])
.map(|()| self.config = Some(*config))
.map_err(Error::I2c)?;
// Determine time to wait for first measurement.
// Values found by experimentation, these do not seem to be specified
// in the datasheet.
let sleep_ms = match config.resolution {
Resolution::Bits12Sps240 => 4,
Resolution::Bits14Sps60 => 15,
Resolution::Bits16Sps15 => 57,
};
self.delay.delay_ms(sleep_ms);
// Poll until ready
let mut buf = [0, 0, 0];
loop {
self.i2c.read(self.address, &mut buf).map_err(Error::I2c)?;
if (buf[2] & ConfigRegister::NOT_READY.bits()) == ConfigRegister::NOT_READY.bits() {
// Not yet ready, wait some more time
self.delay.delay_ms(1);
} else {
break;
}
}
Ok(())
}
/// Read a measurement from the device.
///
/// Note that the [`set_config`](struct.MCP3425.html#method.set_config)
/// method MUST have been called before, otherwise
/// [`Error::NotInitialized`](enum.Error.html#variant.NotInitialized) will
/// be returned.
///
/// If you poll faster than the sample rate,
/// [`Error::NotReady`](enum.Error.html#variant.NotReady) will be returned.
pub fn read_measurement(&mut self) -> Result<Voltage, Error<E>> {
// Make sure that the configuration has been written to the device
let config = self.config.ok_or(Error::NotInitialized)?;
// Read measurement and config register
let (measurement, config_reg) = self.read_i16_and_config()?;
// Calculate voltage from raw value
let voltage = self.calculate_voltage(measurement, &config.resolution)?;
// Check "Not Ready" flag. See datasheet section 5.1.1 for more details.
if config_reg.is_ready() {
// The "Not Ready" flag is not set. This means the latest
// conversion result is ready.
Ok(voltage)
} else {
// The "Not Ready" flag is set. This means the conversion
// result is not updated since the last reading. A new
// conversion is under processing and the RDY bit will be
// cleared when the new conversion result is ready.
Err(Error::NotReady)
}
}
}
#[cfg(test)]
mod tests {
#[cfg(not(feature = "measurements"))]
use super::*;
#[test]
#[cfg(not(feature = "measurements"))]
fn test_voltage_wrapper() {
let a = Voltage::from_millivolts(2500);
assert_eq!(a.as_millivolts(), 2500i16);
assert_eq!(a.as_volts(), 2.5f32);
let b = Voltage::from_millivolts(-100);
assert_eq!(b.as_millivolts(), -100i16);
assert_eq!(b.as_volts(), -0.1f32);
}
}