mcp23017/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#![no_std]
//! Manages an MCP23017, a 16-Bit I2C I/O Expander with Serial Interface module.
//!
//! This operates the chip in `IOCON.BANK=0` mode, i.e. the registers are mapped sequentially.
//! This driver does not set `IOCON.BANK`, but the factory default is `0` and this driver does
//! not change that value.
//!
//! See [the datasheet](http://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf) for more
//! information on the device.
#![deny(
missing_docs,
missing_debug_implementations,
missing_copy_implementations,
trivial_casts,
trivial_numeric_casts,
unstable_features,
unused_import_braces,
unused_qualifications,
warnings
)]
#![allow(dead_code, non_camel_case_types)]
#![allow(clippy::uninit_assumed_init, clippy::upper_case_acronyms)]
extern crate embedded_hal as ehal;
use ehal::blocking::i2c::{Write, WriteRead};
/// The default I2C address of the MCP23017.
const DEFAULT_ADDRESS: u8 = 0x20;
/// Binary constants.
const HIGH: bool = true;
const LOW: bool = false;
/// Struct for an MCP23017.
/// See the crate-level documentation for general info on the device and the operation of this
/// driver.
#[derive(Clone, Copy, Debug)]
pub struct MCP23017<I2C: Write + WriteRead> {
com: I2C,
/// The I2C slave address of this device.
pub address: u8,
}
/// Defines errors
#[derive(Debug, Copy, Clone)]
pub enum Error<E> {
/// Underlying bus error
BusError(E),
/// Interrupt pin not found
InterruptPinError,
}
impl<E> From<E> for Error<E> {
fn from(error: E) -> Self {
Error::BusError(error)
}
}
impl<I2C, E> MCP23017<I2C>
where
I2C: WriteRead<Error = E> + Write<Error = E>,
{
/// Creates an expander with the default configuration.
pub fn default(i2c: I2C) -> Result<MCP23017<I2C>, Error<E>>
where
I2C: Write<Error = E> + WriteRead<Error = E>,
{
MCP23017::new(i2c, DEFAULT_ADDRESS)
}
/// Creates an expander with specific address.
pub fn new(i2c: I2C, address: u8) -> Result<MCP23017<I2C>, Error<E>>
where
I2C: Write<Error = E> + WriteRead<Error = E>,
{
let chip = MCP23017 { com: i2c, address };
Ok(chip)
}
/// Initiates hardware with basic setup.
pub fn init_hardware(&mut self) -> Result<(), Error<E>> {
// set all inputs to defaults on port A and B
self.write_register(Register::IODIRA, 0xff)?;
self.write_register(Register::IODIRB, 0xff)?;
Ok(())
}
fn read_register(&mut self, reg: Register) -> Result<u8, E> {
let mut data: [u8; 1] = [0];
self.com.write_read(self.address, &[reg as u8], &mut data)?;
Ok(data[0])
}
fn read_double_register(&mut self, reg: Register) -> Result<[u8; 2], E> {
let mut buffer: [u8; 2] = [0; 2];
self.com
.write_read(self.address, &[reg as u8], &mut buffer)?;
Ok(buffer)
}
fn write_register(&mut self, reg: Register, byte: u8) -> Result<(), E> {
self.com.write(self.address, &[reg as u8, byte])
}
fn write_double_register(&mut self, reg: Register, word: u16) -> Result<(), E> {
let msb = (word >> 8) as u8;
self.com.write(self.address, &[reg as u8, word as u8, msb])
}
/// Updates a single bit in the register associated with the given pin.
/// This will read the register (`port_a_reg` for pins 0-7, `port_b_reg` for the other eight),
/// set the bit (as specified by the pin position within the register), and write the register
/// back to the device.
fn update_register_bit(
&mut self,
pin: u8,
pin_value: bool,
port_a_reg: Register,
port_b_reg: Register,
) -> Result<(), E> {
let reg = register_for_pin(pin, port_a_reg, port_b_reg);
let bit = bit_for_pin(pin);
let reg_value = self.read_register(reg)?;
let reg_value_mod = write_bit(reg_value, bit, pin_value);
self.write_register(reg, reg_value_mod)
}
/// Sets the mode for a single pin to either `Mode::INPUT` or `Mode::OUTPUT`.
pub fn pin_mode(&mut self, pin: u8, pin_mode: PinMode) -> Result<(), E> {
self.update_register_bit(
pin,
pin_mode.bit_value(),
Register::IODIRA,
Register::IODIRB,
)
}
/// Sets all pins' modes to either `Mode::INPUT` or `Mode::OUTPUT`.
pub fn all_pin_mode(&mut self, pin_mode: PinMode) -> Result<(), E> {
self.write_register(Register::IODIRA, pin_mode.register_value())?;
self.write_register(Register::IODIRB, pin_mode.register_value())
}
/// Reads all 16 pins (port A and B) into a single 16 bit variable.
pub fn read_gpioab(&mut self) -> Result<u16, E> {
let buffer = self.read_double_register(Register::GPIOA)?;
Ok((buffer[0] as u16) << 8 | (buffer[1] as u16))
}
/// Reads a single port, A or B, and returns its current 8 bit value.
pub fn read_gpio(&mut self, port: Port) -> Result<u8, E> {
let reg = match port {
Port::GPIOA => Register::GPIOA,
Port::GPIOB => Register::GPIOB,
};
self.read_register(reg)
}
/// Writes all the pins with the value at the same time.
pub fn write_gpioab(&mut self, value: u16) -> Result<(), E> {
self.write_double_register(Register::GPIOA, value)
}
/// Writes all the pins of one port with the value at the same time.
pub fn write_gpio(&mut self, port: Port, value: u8) -> Result<(), E> {
let reg = match port {
Port::GPIOA => Register::GPIOA,
Port::GPIOB => Register::GPIOB,
};
self.write_register(reg, value)
}
/// Writes a single bit to a single pin.
/// This function internally reads from the output latch register (`OLATA`/`OLATB`) and writes
/// to the GPIO register.
pub fn digital_write(&mut self, pin: u8, value: bool) -> Result<(), E> {
let bit = bit_for_pin(pin);
// Read the current GPIO output latches.
let ol_register = register_for_pin(pin, Register::OLATA, Register::OLATB);
let gpio = self.read_register(ol_register)?;
// Set the pin.
let gpio_mod = write_bit(gpio, bit, value);
// Write the modified register.
let reg_gp = register_for_pin(pin, Register::GPIOA, Register::GPIOB);
self.write_register(reg_gp, gpio_mod)
}
/// Reads a single pin.
pub fn digital_read(&mut self, pin: u8) -> Result<bool, E> {
let bit = bit_for_pin(pin);
let reg = register_for_pin(pin, Register::GPIOA, Register::GPIOB);
let value = self.read_register(reg)?;
Ok(read_bit(value, bit))
}
/// Enables or disables the internal pull-up resistor for a single pin.
pub fn pull_up(&mut self, pin: u8, value: bool) -> Result<(), E> {
self.update_register_bit(pin, value, Register::GPPUA, Register::GPPUB)
}
/// Inverts the input polarity for a single pin.
/// This uses the `IPOLA` or `IPOLB` registers, see the datasheet for more information.
pub fn invert_input_polarity(&mut self, pin: u8, value: bool) -> Result<(), E> {
self.update_register_bit(pin, value, Register::IPOLA, Register::IPOLB)
}
/// Configures the interrupt system. both port A and B are assigned the same configuration.
/// mirroring will OR both INTA and INTB pins.
/// open_drain will set the INT pin to value or open drain.
/// polarity will set LOW or HIGH on interrupt.
/// Default values after Power On Reset are: (false, false, LOW)
pub fn setup_interrupts(
&mut self,
mirroring: bool,
open_drain: bool,
polarity: Polarity,
) -> Result<(), E> {
// configure port A
self.setup_interrupt_port(Register::IOCONA, mirroring, open_drain, polarity)?;
// configure port B
self.setup_interrupt_port(Register::IOCONB, mirroring, open_drain, polarity)
}
fn setup_interrupt_port(
&mut self,
register: Register,
mirroring: bool,
open_drain: bool,
polarity: Polarity,
) -> Result<(), E> {
let mut io_conf_value = self.read_register(register)?;
io_conf_value = write_bit(io_conf_value, 6, mirroring);
io_conf_value = write_bit(io_conf_value, 2, open_drain);
io_conf_value = write_bit(io_conf_value, 1, polarity.bit_value());
self.write_register(register, io_conf_value)
}
/// Sets up a pin for interrupt.
/// Note that the interrupt condition finishes when you read the information about
/// the port / value that caused the interrupt or you read the port itself.
pub fn setup_interrupt_pin(&mut self, pin: u8, int_mode: InterruptMode) -> Result<(), E> {
// set the pin interrupt control (0 means change, 1 means compare against given value)
self.update_register_bit(
pin,
int_mode != InterruptMode::CHANGE,
Register::INTCONA,
Register::INTCONB,
)?;
// in a RISING interrupt the default value is 0, interrupt is triggered when the pin goes to 1
// in a FALLING interrupt the default value is 1, interrupt is triggered when pin goes to 0
self.update_register_bit(
pin,
int_mode == InterruptMode::FALLING,
Register::DEFVALA,
Register::DEFVALB,
)?;
// enable the pin for interrupt
self.update_register_bit(pin, HIGH, Register::GPINTENA, Register::GPINTENB)
}
/// Get last interrupt pin
pub fn get_last_interrupt_pin(&mut self) -> Result<u8, Error<E>> {
// try port A
let intf_a = self.read_register(Register::INTFA)?;
for x in 0..8 {
if read_bit(intf_a, x) {
return Ok(x);
}
}
// try port B
let intf_b = self.read_register(Register::INTFB)?;
for x in 0..8 {
if read_bit(intf_b, x) {
return Ok(x + 8);
}
}
Err(Error::InterruptPinError)
}
/// Gets last interrupt value
pub fn get_last_interrupt_value(&mut self) -> Result<u8, Error<E>> {
match self.get_last_interrupt_pin() {
Ok(pin) => {
let int_reg = register_for_pin(pin, Register::INTCAPA, Register::INTCAPB);
let bit = bit_for_pin(pin);
let val = self.read_register(int_reg)?;
Ok((val >> bit) & 0x01)
}
Err(e) => Err(e),
}
}
}
/// Changes the bit at position `bit` within `reg` to `val`.
fn write_bit(reg: u8, bit: u8, val: bool) -> u8 {
let mut res = reg;
if val {
res |= 1 << bit;
} else {
res &= !(1 << bit);
}
res
}
/// Returns whether the bit at position `bit` within `reg` is set.
fn read_bit(reg: u8, bit: u8) -> bool {
reg & (1 << bit) != 0
}
/// Returns the bit index associated with a given pin.
fn bit_for_pin(pin: u8) -> u8 {
pin % 8
}
/// Returns the register address, port dependent, for a given pin.
fn register_for_pin(pin: u8, port_a_addr: Register, port_b_addr: Register) -> Register {
if pin < 8 {
port_a_addr
} else {
port_b_addr
}
}
/// Pin modes.
#[derive(Debug, Copy, Clone)]
pub enum PinMode {
/// Represents input mode.
INPUT = 1,
/// Represents output mode.
OUTPUT = 0,
}
impl PinMode {
/// Returns the binary value of the `PinMode`, as used in IODIR.
fn bit_value(&self) -> bool {
match *self {
PinMode::INPUT => true,
PinMode::OUTPUT => false,
}
}
/// Returns a whole register full of the binary value of the `PinMode`.
fn register_value(&self) -> u8 {
match *self {
PinMode::INPUT => 0xff,
PinMode::OUTPUT => 0x00,
}
}
}
/// Interrupt modes.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum InterruptMode {
/// Represents change mode.
CHANGE = 0,
/// Represents falling mode.
FALLING = 1,
/// Represents rising mode.
RISING = 2,
}
/// Polarity modes.
#[derive(Debug, Copy, Clone)]
pub enum Polarity {
/// Represents active-low mode.
LOW = 0,
/// Represents active-high mode.
HIGH = 1,
}
impl Polarity {
/// Returns the binary value of the Polarity, as used in IOCON.
fn bit_value(&self) -> bool {
match self {
Polarity::LOW => false,
Polarity::HIGH => true,
}
}
}
/// Generic port definitions.
#[derive(Debug, Copy, Clone)]
pub enum Port {
/// Represent port A.
GPIOA,
/// Represent port B.
GPIOB,
}
#[derive(Debug, Copy, Clone)]
enum Register {
IODIRA = 0x00,
IPOLA = 0x02,
GPINTENA = 0x04,
DEFVALA = 0x06,
INTCONA = 0x08,
IOCONA = 0x0A,
GPPUA = 0x0C,
INTFA = 0x0E,
INTCAPA = 0x10,
GPIOA = 0x12,
OLATA = 0x14,
IODIRB = 0x01,
IPOLB = 0x03,
GPINTENB = 0x05,
DEFVALB = 0x07,
INTCONB = 0x09,
IOCONB = 0x0B,
GPPUB = 0x0D,
INTFB = 0x0F,
INTCAPB = 0x11,
GPIOB = 0x13,
OLATB = 0x15,
}