1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// Copyright 2016 - 2018 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#[cfg(feature="std")]
use core::cell::UnsafeCell;
use core::cmp::min;
use core::mem::size_of;
use core::ptr::copy_nonoverlapping;
use core::slice;

use crate::aligned_alloc::Alloc;

use crate::ptr::Ptr;
use crate::util::range_chunk;
use crate::util::round_up_to;

use crate::kernel::ConstNum;
use crate::kernel::Element;
use crate::kernel::GemmKernel;
use crate::kernel::GemmSelect;
#[cfg(feature = "cgemm")]
use crate::kernel::{c32, c64};
use crate::threading::{get_thread_pool, ThreadPoolCtx, LoopThreadConfig};
use crate::sgemm_kernel;
use crate::dgemm_kernel;
#[cfg(feature = "cgemm")]
use crate::cgemm_kernel;
#[cfg(feature = "cgemm")]
use crate::zgemm_kernel;
use rawpointer::PointerExt;

/// General matrix multiplication (f32)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
pub unsafe fn sgemm(
    m: usize, k: usize, n: usize,
    alpha: f32,
    a: *const f32, rsa: isize, csa: isize,
    b: *const f32, rsb: isize, csb: isize,
    beta: f32,
    c: *mut f32, rsc: isize, csc: isize)
{
    sgemm_kernel::detect(GemmParameters { m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc})
}

/// General matrix multiplication (f64)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
pub unsafe fn dgemm(
    m: usize, k: usize, n: usize,
    alpha: f64,
    a: *const f64, rsa: isize, csa: isize,
    b: *const f64, rsb: isize, csb: isize,
    beta: f64,
    c: *mut f64, rsc: isize, csc: isize)
{
    dgemm_kernel::detect(GemmParameters { m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc})
}

/// cgemm/zgemm per-operand options
///
/// TBD.
#[cfg(feature = "cgemm")]
#[non_exhaustive]
#[derive(Copy, Clone, Debug)]
pub enum CGemmOption {
    /// Standard
    Standard,
}

#[cfg(feature = "cgemm")]
/// General matrix multiplication (complex f32)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
///
/// Requires crate feature `"cgemm"`
pub unsafe fn cgemm(
    flaga: CGemmOption, flagb: CGemmOption,
    m: usize, k: usize, n: usize,
    alpha: c32,
    a: *const c32, rsa: isize, csa: isize,
    b: *const c32, rsb: isize, csb: isize,
    beta: c32,
    c: *mut c32, rsc: isize, csc: isize)
{
    let _ = (flaga, flagb);
    cgemm_kernel::detect(GemmParameters { m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc})
}

#[cfg(feature = "cgemm")]
/// General matrix multiplication (complex f64)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
///
/// Requires crate feature `"cgemm"`
pub unsafe fn zgemm(
    flaga: CGemmOption, flagb: CGemmOption,
    m: usize, k: usize, n: usize,
    alpha: c64,
    a: *const c64, rsa: isize, csa: isize,
    b: *const c64, rsb: isize, csb: isize,
    beta: c64,
    c: *mut c64, rsc: isize, csc: isize)
{
    let _ = (flaga, flagb);
    zgemm_kernel::detect(GemmParameters { m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc})
}

struct GemmParameters<T> {
    // Parameters grouped logically in rows
    m: usize, k: usize, n: usize,
    alpha: T,
    a: *const T, rsa: isize, csa: isize,
    beta: T,
    b: *const T, rsb: isize, csb: isize,
    c:   *mut T, rsc: isize, csc: isize,
}

impl<T> GemmSelect<T> for GemmParameters<T> {
    fn select<K>(self, _kernel: K)
       where K: GemmKernel<Elem=T>,
             T: Element,
    {
        // This is where we enter with the configuration specific kernel
        // We could cache kernel specific function pointers here, if we
        // needed to support more constly configuration detection.
        let GemmParameters {
            m, k, n,
            alpha,
            a, rsa, csa,
            b, rsb, csb,
            beta,
            c, rsc, csc} = self;

        unsafe {
            gemm_loop::<K>(
                m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc)
        }
    }
}


/// Ensure that GemmKernel parameters are supported
/// (alignment, microkernel size).
///
/// This function is optimized out for a supported configuration.
#[inline(always)]
fn ensure_kernel_params<K>()
    where K: GemmKernel
{
    let mr = K::MR;
    let nr = K::NR;
    // These are current limitations,
    // can change if corresponding code in gemm_loop is updated.
    assert!(mr > 0 && mr <= 8);
    assert!(nr > 0 && nr <= 8);
    assert!(mr * nr * size_of::<K::Elem>() <= 8 * 4 * 8);
    assert!(K::align_to() <= 32);
    // one row/col of the kernel is limiting the max align we can provide
    let max_align = size_of::<K::Elem>() * min(mr, nr);
    assert!(K::align_to() <= max_align);

    assert!(K::MR <= K::mc());
    assert!(K::mc() <= K::kc());
    assert!(K::kc() <= K::nc());
    assert!(K::nc() <= 65536);
}

/// Implement matrix multiply using packed buffers and a microkernel
/// strategy, the type parameter `K` is the gemm microkernel.
// no inline is best for the default case, where we support many K per
// gemm entry point. FIXME: make this conditional on feature detection
#[inline(never)]
unsafe fn gemm_loop<K>(
    m: usize, k: usize, n: usize,
    alpha: K::Elem,
    a: *const K::Elem, rsa: isize, csa: isize,
    b: *const K::Elem, rsb: isize, csb: isize,
    beta: K::Elem,
    c: *mut K::Elem, rsc: isize, csc: isize)
    where K: GemmKernel
{
    debug_assert!(m <= 1 || n == 0 || rsc != 0);
    debug_assert!(m == 0 || n <= 1 || csc != 0);

    // if A or B have no elements, compute C ← βC and return
    if m == 0 || k == 0 || n == 0 {
        return c_to_beta_c(m, n, beta, c, rsc, csc);
    }

    let knc = K::nc();
    let kkc = K::kc();
    let kmc = K::mc();
    ensure_kernel_params::<K>();

    let a = Ptr(a);
    let b = Ptr(b);
    let c = Ptr(c);

    let (nthreads, tp) = get_thread_pool();
    let thread_config = LoopThreadConfig::new::<K>(m, k, n, nthreads);
    let nap = thread_config.num_pack_a();

    let (mut packing_buffer, ap_size) = make_packing_buffer::<K>(m, k, n, nap);
    let app = Ptr(packing_buffer.ptr_mut());
    let bpp = app.add(ap_size * nap);

    // LOOP 5: split n into nc parts (B, C)
    for (l5, nc) in range_chunk(n, knc) {
        dprint!("LOOP 5, {}, nc={}", l5, nc);
        let b = b.stride_offset(csb, knc * l5);
        let c = c.stride_offset(csc, knc * l5);

        // LOOP 4: split k in kc parts (A, B)
        // This particular loop can't be parallelized because the
        // C chunk (writable) is shared between iterations.
        for (l4, kc) in range_chunk(k, kkc) {
            dprint!("LOOP 4, {}, kc={}", l4, kc);
            let b = b.stride_offset(rsb, kkc * l4);
            let a = a.stride_offset(csa, kkc * l4);

            // Pack B -> B~
            pack::<K::NRTy, _>(kc, nc, bpp.ptr(), b.ptr(), csb, rsb);

            // First time writing to C, use user's `beta`, else accumulate
            let betap = if l4 == 0 { beta } else { <_>::one() };

            // LOOP 3: split m into mc parts (A, C)
            range_chunk(m, kmc)
                .parallel(thread_config.loop3, tp)
                .thread_local(move |i, _nt| {
                    // a packing buffer A~ per thread
                    debug_assert!(i < nap);
                    app.add(ap_size * i)
                })
                .for_each(move |tp, &mut app, l3, mc| {
                    dprint!("LOOP 3, {}, mc={}", l3, mc);
                    let a = a.stride_offset(rsa, kmc * l3);
                    let c = c.stride_offset(rsc, kmc * l3);

                    // Pack A -> A~
                    pack::<K::MRTy, _>(kc, mc, app.ptr(), a.ptr(), rsa, csa);

                    // LOOP 2 and 1
                    gemm_packed::<K>(nc, kc, mc,
                                     alpha,
                                     app.to_const(), bpp.to_const(),
                                     betap,
                                     c, rsc, csc,
                                     tp, thread_config);
                });
        }
    }
}

// set up buffer for masked (redirected output of) kernel
const KERNEL_MAX_SIZE: usize = 8 * 8 * 4;
const KERNEL_MAX_ALIGN: usize = 32;
const MASK_BUF_SIZE: usize = KERNEL_MAX_SIZE + KERNEL_MAX_ALIGN - 1;

// Pointers into buffer will be manually aligned anyway, due to
// bugs we have seen on certain platforms (macos) that look like
// we don't get aligned allocations out of TLS (?).
#[repr(align(32))]
struct MaskBuffer {
    buffer: [u8; MASK_BUF_SIZE],
}

// Use thread local if we can; this is faster even in the single threaded case because
// it is possible to skip zeroing out the array.
#[cfg(feature = "std")]
thread_local! {
    static MASK_BUF: UnsafeCell<MaskBuffer> =
        UnsafeCell::new(MaskBuffer { buffer: [0; MASK_BUF_SIZE] });
}

/// Loops 1 and 2 around the µ-kernel
///
/// + app: packed A (A~)
/// + bpp: packed B (B~)
/// + nc: columns of packed B
/// + kc: columns of packed A / rows of packed B
/// + mc: rows of packed A
unsafe fn gemm_packed<K>(nc: usize, kc: usize, mc: usize,
                         alpha: K::Elem,
                         app: Ptr<*const K::Elem>, bpp: Ptr<*const K::Elem>,
                         beta: K::Elem,
                         c: Ptr<*mut K::Elem>, rsc: isize, csc: isize,
                         tp: ThreadPoolCtx, thread_config: LoopThreadConfig)
    where K: GemmKernel,
{
    let mr = K::MR;
    let nr = K::NR;
    // check for the mask buffer that fits 8 x 8 f32 and 8 x 4 f64 kernels and alignment
    assert!(mr * nr * size_of::<K::Elem>() <= KERNEL_MAX_SIZE && K::align_to() <= KERNEL_MAX_ALIGN);

    #[cfg(not(feature = "std"))]
    let mut mask_buf = MaskBuffer { buffer: [0; MASK_BUF_SIZE] };

    // LOOP 2: through micropanels in packed `b` (B~, C)
    range_chunk(nc, nr)
        .parallel(thread_config.loop2, tp)
        .thread_local(|_i, _nt| {
            let mut ptr;
            #[cfg(not(feature = "std"))]
            {
                debug_assert_eq!(_nt, 1);
                ptr = mask_buf.buffer.as_mut_ptr();
            }
            #[cfg(feature = "std")]
            {
                ptr = MASK_BUF.with(|buf| (*buf.get()).buffer.as_mut_ptr());
            }
            ptr = align_ptr(K::align_to(), ptr);
            slice::from_raw_parts_mut(ptr as *mut K::Elem, KERNEL_MAX_SIZE / size_of::<K::Elem>())
        })
        .for_each(move |_tp, mask_buf, l2, nr_| {
            let bpp = bpp.stride_offset(1, kc * nr * l2);
            let c = c.stride_offset(csc, nr * l2);

            // LOOP 1: through micropanels in packed `a` while `b` is constant (A~, C)
            for (l1, mr_) in range_chunk(mc, mr) {
                let app = app.stride_offset(1, kc * mr * l1);
                let c = c.stride_offset(rsc, mr * l1);

                // GEMM KERNEL
                // NOTE: For the rust kernels, it performs better to simply
                // always use the masked kernel function!
                if K::always_masked() || nr_ < nr || mr_ < mr {
                    masked_kernel::<_, K>(kc, alpha, &*app.ptr(), &*bpp.ptr(),
                                          beta, &mut *c.ptr(), rsc, csc,
                                          mr_, nr_, mask_buf);
                    continue;
                } else {
                    K::kernel(kc, alpha, app.ptr(), bpp.ptr(), beta, c.ptr(), rsc, csc);
                }
            }
        });
}

/// Allocate a vector of uninitialized data to be used for both packing buffers.
///
/// + A~ needs be KC x MC
/// + B~ needs be KC x NC
/// but we can make them smaller if the matrix is smaller than this (just ensure
/// we have rounded up to a multiple of the kernel size).
///
/// na: Number of buffers to alloc for A
///
/// Return packing buffer and size of A~ (The offset to B~ is A~ size times `na`).
unsafe fn make_packing_buffer<K>(m: usize, k: usize, n: usize, na: usize) -> (Alloc<K::Elem>, usize)
    where K: GemmKernel,
{
    // max alignment requirement is a multiple of min(MR, NR) * sizeof<Elem>
    // because apack_size is a multiple of MR, start of b aligns fine
    let m = min(m, K::mc());
    let k = min(k, K::kc());
    let n = min(n, K::nc());
    // round up k, n to multiples of mr, nr
    // round up to multiple of kc
    debug_assert_ne!(na, 0);
    debug_assert!(na <= 128);
    let apack_size = k * round_up_to(m, K::MR);
    let bpack_size = k * round_up_to(n, K::NR);
    let nelem = apack_size * na + bpack_size;

    dprint!("packed nelem={}, apack={}, bpack={},
             m={} k={} n={}, na={}",
             nelem, apack_size, bpack_size,
             m,k,n, na);

    (Alloc::new(nelem, K::align_to()), apack_size)
}

/// offset the ptr forwards to align to a specific byte count
/// Safety: align_to must be a power of two and ptr valid for the pointer arithmetic
#[inline]
unsafe fn align_ptr<T>(align_to: usize, mut ptr: *mut T) -> *mut T {
    if align_to != 0 {
        let cur_align = ptr as usize % align_to;
        if cur_align != 0 {
            ptr = ptr.offset(((align_to - cur_align) / size_of::<T>()) as isize);
        }
    }
    ptr
}

/// Pack matrix into `pack`
///
/// + kc: length of the micropanel
/// + mc: number of rows/columns in the matrix to be packed
/// + pack: packing buffer
/// + a: matrix,
/// + rsa: row stride
/// + csa: column stride
///
/// + MR: kernel rows/columns that we round up to
unsafe fn pack<MR, T>(kc: usize, mc: usize, pack: *mut T,
                      a: *const T, rsa: isize, csa: isize)
    where T: Element,
          MR: ConstNum,
{
    let mr = MR::VALUE;
    let mut p = 0; // offset into pack

    if rsa == 1 {
        // if the matrix is contiguous in the same direction we are packing,
        // copy a kernel row at a time.
        for ir in 0..mc/mr {
            let row_offset = ir * mr;
            for j in 0..kc {
                let a_row = a.stride_offset(rsa, row_offset)
                             .stride_offset(csa, j);
                copy_nonoverlapping(a_row, pack.add(p), mr);
                p += mr;
            }
        }
    } else {
        // general layout case
        for ir in 0..mc/mr {
            let row_offset = ir * mr;
            for j in 0..kc {
                for i in 0..mr {
                    let a_elt = a.stride_offset(rsa, i + row_offset)
                                 .stride_offset(csa, j);
                    copy_nonoverlapping(a_elt, pack.add(p), 1);
                    p += 1;
                }
            }
        }
    }

    let zero = <_>::zero();

    // Pad with zeros to multiple of kernel size (uneven mc)
    let rest = mc % mr;
    if rest > 0 {
        let row_offset = (mc/mr) * mr;
        for j in 0..kc {
            for i in 0..mr {
                if i < rest {
                    let a_elt = a.stride_offset(rsa, i + row_offset)
                                 .stride_offset(csa, j);
                    copy_nonoverlapping(a_elt, pack.add(p), 1);
                } else {
                    *pack.add(p) = zero;
                }
                p += 1;
            }
        }
    }
}

/// Call the GEMM kernel with a "masked" output C.
/// 
/// Simply redirect the MR by NR kernel output to the passed
/// in `mask_buf`, and copy the non masked region to the real
/// C.
///
/// + rows: rows of kernel unmasked
/// + cols: cols of kernel unmasked
#[inline(never)]
unsafe fn masked_kernel<T, K>(k: usize, alpha: T,
                              a: *const T,
                              b: *const T,
                              beta: T,
                              c: *mut T, rsc: isize, csc: isize,
                              rows: usize, cols: usize,
                              mask_buf: &mut [T])
    where K: GemmKernel<Elem=T>, T: Element,
{
    // use column major order for `mask_buf`
    K::kernel(k, alpha, a, b, T::zero(), mask_buf.as_mut_ptr(), 1, K::MR as isize);
    c_to_masked_ab_beta_c::<_, K>(beta, c, rsc, csc, rows, cols, &*mask_buf);
}

/// Copy output in `mask_buf` to the actual c matrix
///
/// C ← M + βC  where M is the `mask_buf`
#[inline]
unsafe fn c_to_masked_ab_beta_c<T, K>(beta: T,
                                      c: *mut T, rsc: isize, csc: isize,
                                      rows: usize, cols: usize,
                                      mask_buf: &[T])
    where K: GemmKernel<Elem=T>, T: Element,
{
    // note: use separate function here with `&T` argument for mask buf,
    // so that the compiler sees that `c` and `mask_buf` never alias.
    let mr = K::MR;
    let nr = K::NR;
    let mut ab = mask_buf.as_ptr();
    for j in 0..nr {
        for i in 0..mr {
            if i < rows && j < cols {
                let cptr = c.stride_offset(rsc, i)
                            .stride_offset(csc, j);
                if beta.is_zero() {
                    *cptr = *ab; // initialize
                } else {
                    (*cptr).mul_assign(beta);
                    (*cptr).add_assign(*ab);
                }
            }
            ab.inc();
        }
    }
}

// Compute just C ← βC
unsafe fn c_to_beta_c<T>(m: usize, n: usize, beta: T,
                         c: *mut T, rsc: isize, csc: isize)
    where T: Element
{
    for i in 0..m {
        for j in 0..n {
            let cptr = c.stride_offset(rsc, i)
                        .stride_offset(csc, j);
            if beta.is_zero() {
                *cptr = T::zero(); // initialize C
            } else {
                (*cptr).mul_assign(beta);
            }
        }
    }
}