1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::{
    collections::HashMap,
    ops::Deref,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc,
    },
};

use as_variant::as_variant;
use ruma::{
    api::client::keys::upload_signatures::v3::Request as SignatureUploadRequest,
    events::{
        key::verification::VerificationMethod, room::message::KeyVerificationRequestEventContent,
    },
    DeviceId, EventId, OwnedDeviceId, OwnedUserId, RoomId, UserId,
};
use serde::{Deserialize, Serialize};
use tracing::error;

use super::{atomic_bool_deserializer, atomic_bool_serializer};
use crate::{
    error::SignatureError,
    store::{Changes, IdentityChanges, Store},
    types::{MasterPubkey, SelfSigningPubkey, UserSigningPubkey},
    verification::VerificationMachine,
    CryptoStoreError, OutgoingVerificationRequest, ReadOnlyDevice, VerificationRequest,
};

/// Enum over the different user identity types we can have.
#[derive(Debug, Clone)]
pub enum UserIdentities {
    /// Our own user identity.
    Own(OwnUserIdentity),
    /// An identity belonging to another user.
    Other(UserIdentity),
}

impl UserIdentities {
    /// Destructure the enum into an `OwnUserIdentity` if it's of the correct
    /// type.
    pub fn own(self) -> Option<OwnUserIdentity> {
        as_variant!(self, Self::Own)
    }

    /// Destructure the enum into an `UserIdentity` if it's of the correct
    /// type.
    pub fn other(self) -> Option<UserIdentity> {
        as_variant!(self, Self::Other)
    }

    /// Get the ID of the user this identity belongs to.
    pub fn user_id(&self) -> &UserId {
        match self {
            UserIdentities::Own(u) => u.user_id(),
            UserIdentities::Other(u) => u.user_id(),
        }
    }

    pub(crate) fn new(
        store: Store,
        identity: ReadOnlyUserIdentities,
        verification_machine: VerificationMachine,
        own_identity: Option<ReadOnlyOwnUserIdentity>,
    ) -> Self {
        match identity {
            ReadOnlyUserIdentities::Own(i) => {
                Self::Own(OwnUserIdentity { inner: i, verification_machine, store })
            }
            ReadOnlyUserIdentities::Other(i) => {
                Self::Other(UserIdentity { inner: i, own_identity, verification_machine })
            }
        }
    }
}

impl From<OwnUserIdentity> for UserIdentities {
    fn from(i: OwnUserIdentity) -> Self {
        Self::Own(i)
    }
}

impl From<UserIdentity> for UserIdentities {
    fn from(i: UserIdentity) -> Self {
        Self::Other(i)
    }
}

/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that is our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
///
/// This struct wraps a read-only version of the struct and allows verifications
/// to be requested to verify our own device with the user identity.
#[derive(Debug, Clone)]
pub struct OwnUserIdentity {
    pub(crate) inner: ReadOnlyOwnUserIdentity,
    pub(crate) verification_machine: VerificationMachine,
    store: Store,
}

impl Deref for OwnUserIdentity {
    type Target = ReadOnlyOwnUserIdentity;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl OwnUserIdentity {
    /// Mark our user identity as verified.
    ///
    /// This will mark the identity locally as verified and sign it with our own
    /// device.
    ///
    /// Returns a signature upload request that needs to be sent out.
    pub async fn verify(&self) -> Result<SignatureUploadRequest, SignatureError> {
        self.mark_as_verified();

        let changes = Changes {
            identities: IdentityChanges {
                changed: vec![self.inner.clone().into()],
                new: vec![],
                unchanged: vec![],
            },
            ..Default::default()
        };

        if let Err(e) = self.verification_machine.store.save_changes(changes).await {
            error!(error = ?e, "Couldn't store our own user identity after marking it as verified");
        }

        let cache = self.store.cache().await?;
        let account = cache.account().await?;
        account.sign_master_key(self.master_key.clone())
    }

    /// Send a verification request to our other devices.
    pub async fn request_verification(
        &self,
    ) -> Result<(VerificationRequest, OutgoingVerificationRequest), CryptoStoreError> {
        self.request_verification_helper(None).await
    }

    /// Send a verification request to our other devices while specifying our
    /// supported methods.
    ///
    /// # Arguments
    ///
    /// * `methods` - The verification methods that we're supporting.
    pub async fn request_verification_with_methods(
        &self,
        methods: Vec<VerificationMethod>,
    ) -> Result<(VerificationRequest, OutgoingVerificationRequest), CryptoStoreError> {
        self.request_verification_helper(Some(methods)).await
    }

    /// Does our user identity trust our own device, i.e. have we signed our
    /// own device keys with our self-signing key.
    pub async fn trusts_our_own_device(&self) -> Result<bool, CryptoStoreError> {
        Ok(if let Some(signatures) = self.verification_machine.store.device_signatures().await? {
            let mut device_keys = self.store.cache().await?.account().await?.device_keys();
            device_keys.signatures = signatures;

            self.inner.self_signing_key().verify_device_keys(&device_keys).is_ok()
        } else {
            false
        })
    }

    async fn request_verification_helper(
        &self,
        methods: Option<Vec<VerificationMethod>>,
    ) -> Result<(VerificationRequest, OutgoingVerificationRequest), CryptoStoreError> {
        let all_devices = self.verification_machine.store.get_user_devices(self.user_id()).await?;
        let devices = self
            .inner
            .filter_devices_to_request(all_devices, self.verification_machine.own_device_id());

        Ok(self
            .verification_machine
            .request_to_device_verification(self.user_id(), devices, methods)
            .await)
    }
}

/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that isn't our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
///
/// This struct wraps a read-only version of the struct and allows verifications
/// to be requested to verify our own device with the user identity.
#[derive(Debug, Clone)]
pub struct UserIdentity {
    pub(crate) inner: ReadOnlyUserIdentity,
    pub(crate) own_identity: Option<ReadOnlyOwnUserIdentity>,
    pub(crate) verification_machine: VerificationMachine,
}

impl Deref for UserIdentity {
    type Target = ReadOnlyUserIdentity;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl UserIdentity {
    /// Is this user identity verified.
    pub fn is_verified(&self) -> bool {
        self.own_identity.as_ref().is_some_and(|o| o.is_identity_signed(&self.inner).is_ok())
    }

    /// Manually verify this user.
    ///
    /// This method will attempt to sign the user identity using our private
    /// cross signing key.
    ///
    /// This method fails if we don't have the private part of our user-signing
    /// key.
    ///
    /// Returns a request that needs to be sent out for the user to be marked
    /// as verified.
    pub async fn verify(&self) -> Result<SignatureUploadRequest, SignatureError> {
        if self.user_id() != self.verification_machine.own_user_id() {
            Ok(self
                .verification_machine
                .store
                .private_identity
                .lock()
                .await
                .sign_user(&self.inner)
                .await?)
        } else {
            Err(SignatureError::UserIdMismatch)
        }
    }

    /// Create a `VerificationRequest` object after the verification request
    /// content has been sent out.
    pub async fn request_verification(
        &self,
        room_id: &RoomId,
        request_event_id: &EventId,
        methods: Option<Vec<VerificationMethod>>,
    ) -> VerificationRequest {
        self.verification_machine
            .request_verification(&self.inner, room_id, request_event_id, methods)
            .await
    }

    /// Send a verification request to the given user.
    ///
    /// The returned content needs to be sent out into a DM room with the given
    /// user.
    ///
    /// After the content has been sent out a `VerificationRequest` can be
    /// started with the [`request_verification()`] method.
    ///
    /// [`request_verification()`]: #method.request_verification
    pub async fn verification_request_content(
        &self,
        methods: Option<Vec<VerificationMethod>>,
    ) -> KeyVerificationRequestEventContent {
        VerificationRequest::request(
            self.verification_machine.own_user_id(),
            self.verification_machine.own_device_id(),
            self.user_id(),
            methods,
        )
    }
}

/// Enum over the different user identity types we can have.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum ReadOnlyUserIdentities {
    /// Our own user identity.
    Own(ReadOnlyOwnUserIdentity),
    /// Identities of other users.
    Other(ReadOnlyUserIdentity),
}

impl From<ReadOnlyOwnUserIdentity> for ReadOnlyUserIdentities {
    fn from(identity: ReadOnlyOwnUserIdentity) -> Self {
        ReadOnlyUserIdentities::Own(identity)
    }
}

impl From<ReadOnlyUserIdentity> for ReadOnlyUserIdentities {
    fn from(identity: ReadOnlyUserIdentity) -> Self {
        ReadOnlyUserIdentities::Other(identity)
    }
}

impl ReadOnlyUserIdentities {
    /// The unique user id of this identity.
    pub fn user_id(&self) -> &UserId {
        match self {
            ReadOnlyUserIdentities::Own(i) => i.user_id(),
            ReadOnlyUserIdentities::Other(i) => i.user_id(),
        }
    }

    /// Get the master key of the identity.
    pub fn master_key(&self) -> &MasterPubkey {
        match self {
            ReadOnlyUserIdentities::Own(i) => i.master_key(),
            ReadOnlyUserIdentities::Other(i) => i.master_key(),
        }
    }

    /// Get the self-signing key of the identity.
    pub fn self_signing_key(&self) -> &SelfSigningPubkey {
        match self {
            ReadOnlyUserIdentities::Own(i) => &i.self_signing_key,
            ReadOnlyUserIdentities::Other(i) => &i.self_signing_key,
        }
    }

    /// Get the user-signing key of the identity, this is only present for our
    /// own user identity..
    pub fn user_signing_key(&self) -> Option<&UserSigningPubkey> {
        match self {
            ReadOnlyUserIdentities::Own(i) => Some(&i.user_signing_key),
            ReadOnlyUserIdentities::Other(_) => None,
        }
    }

    /// Destructure the enum into an `ReadOnlyOwnUserIdentity` if it's of the
    /// correct type.
    pub fn own(&self) -> Option<&ReadOnlyOwnUserIdentity> {
        as_variant!(self, Self::Own)
    }

    pub(crate) fn into_own(self) -> Option<ReadOnlyOwnUserIdentity> {
        as_variant!(self, Self::Own)
    }

    /// Destructure the enum into an `UserIdentity` if it's of the correct
    /// type.
    pub fn other(&self) -> Option<&ReadOnlyUserIdentity> {
        as_variant!(self, Self::Other)
    }
}

/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that isn't our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
#[derive(Debug, Clone, Deserialize, Serialize)]
pub struct ReadOnlyUserIdentity {
    user_id: OwnedUserId,
    pub(crate) master_key: MasterPubkey,
    self_signing_key: SelfSigningPubkey,
}

impl PartialEq for ReadOnlyUserIdentity {
    /// The `PartialEq` implementation compares several attributes, including
    /// the user ID, key material, usage, and, notably, the signatures of
    /// the master key.
    ///
    /// This approach contrasts with the `PartialEq` implementation of the
    /// [`MasterPubkey`], and [`SelfSigningPubkey`] types,
    /// where the signatures are disregarded. This distinction arises from our
    /// treatment of identity as the combined representation of cross-signing
    /// keys and the associated verification state.
    ///
    /// The verification state of an identity depends on the signatures of the
    /// master key, requiring their inclusion in our `PartialEq` implementation.
    fn eq(&self, other: &Self) -> bool {
        self.user_id == other.user_id
            && self.master_key == other.master_key
            && self.self_signing_key == other.self_signing_key
            && self.master_key.signatures() == other.master_key.signatures()
    }
}

impl ReadOnlyUserIdentity {
    /// Create a new user identity with the given master and self signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The master key of the user identity.
    ///
    /// * `self signing key` - The self signing key of user identity.
    ///
    /// Returns a `SignatureError` if the self signing key fails to be correctly
    /// verified by the given master key.
    pub(crate) fn new(
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
    ) -> Result<Self, SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;

        Ok(Self { user_id: master_key.user_id().into(), master_key, self_signing_key })
    }

    #[cfg(test)]
    pub(crate) async fn from_private(identity: &crate::olm::PrivateCrossSigningIdentity) -> Self {
        let master_key = identity.master_key.lock().await.as_ref().unwrap().public_key.clone();
        let self_signing_key =
            identity.self_signing_key.lock().await.as_ref().unwrap().public_key.clone();

        Self { user_id: identity.user_id().into(), master_key, self_signing_key }
    }

    /// Get the user id of this identity.
    pub fn user_id(&self) -> &UserId {
        &self.user_id
    }

    /// Get the public master key of the identity.
    pub fn master_key(&self) -> &MasterPubkey {
        &self.master_key
    }

    /// Get the public self-signing key of the identity.
    pub fn self_signing_key(&self) -> &SelfSigningPubkey {
        &self.self_signing_key
    }

    /// Update the identity with a new master key and self signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The new master key of the user identity.
    ///
    /// * `self_signing_key` - The new self signing key of user identity.
    ///
    /// Returns a `SignatureError` if we failed to update the identity.
    /// Otherwise, returns `true` if there was a change to the identity and
    /// `false` if the identity is unchanged.
    pub(crate) fn update(
        &mut self,
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
    ) -> Result<bool, SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;

        let new = Self::new(master_key, self_signing_key)?;
        let changed = new != *self;

        *self = new;
        Ok(changed)
    }

    /// Check if the given device has been signed by this identity.
    ///
    /// The user_id of the user identity and the user_id of the device need to
    /// match for the signature check to succeed as we don't trust users to sign
    /// devices of other users.
    ///
    /// # Arguments
    ///
    /// * `device` - The device that should be checked for a valid signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub(crate) fn is_device_signed(&self, device: &ReadOnlyDevice) -> Result<(), SignatureError> {
        if self.user_id() != device.user_id() {
            return Err(SignatureError::UserIdMismatch);
        }

        self.self_signing_key.verify_device(device)
    }
}

/// Struct representing a cross signing identity of our own user.
///
/// This is the user identity of our own user. This user identity will contain a
/// master key, self signing key as well as a user signing key.
///
/// This identity can verify other identities as well as devices belonging to
/// the identity.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ReadOnlyOwnUserIdentity {
    user_id: OwnedUserId,
    master_key: MasterPubkey,
    self_signing_key: SelfSigningPubkey,
    user_signing_key: UserSigningPubkey,
    #[serde(
        serialize_with = "atomic_bool_serializer",
        deserialize_with = "atomic_bool_deserializer"
    )]
    verified: Arc<AtomicBool>,
}

impl PartialEq for ReadOnlyOwnUserIdentity {
    /// The `PartialEq` implementation compares several attributes, including
    /// the user ID, key material, usage, and, notably, the signatures of
    /// the master key.
    ///
    /// This approach contrasts with the `PartialEq` implementation of the
    /// [`MasterPubkey`], [`SelfSigningPubkey`] and [`UserSigningPubkey`] types,
    /// where the signatures are disregarded. This distinction arises from our
    /// treatment of identity as the combined representation of cross-signing
    /// keys and the associated verification state.
    ///
    /// The verification state of an identity depends on the signatures of the
    /// master key, requiring their inclusion in our `PartialEq` implementation.
    fn eq(&self, other: &Self) -> bool {
        self.user_id == other.user_id
            && self.master_key == other.master_key
            && self.self_signing_key == other.self_signing_key
            && self.user_signing_key == other.user_signing_key
            && self.is_verified() == other.is_verified()
            && self.master_key.signatures() == other.master_key.signatures()
    }
}

impl ReadOnlyOwnUserIdentity {
    /// Create a new own user identity with the given master, self signing, and
    /// user signing key.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The master key of the user identity.
    ///
    /// * `self_signing_key` - The self signing key of user identity.
    ///
    /// * `user_signing_key` - The user signing key of user identity.
    ///
    /// Returns a `SignatureError` if the self signing key fails to be correctly
    /// verified by the given master key.
    pub(crate) fn new(
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
        user_signing_key: UserSigningPubkey,
    ) -> Result<Self, SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;
        master_key.verify_subkey(&user_signing_key)?;

        Ok(Self {
            user_id: master_key.user_id().into(),
            master_key,
            self_signing_key,
            user_signing_key,
            verified: Arc::new(AtomicBool::new(false)),
        })
    }

    #[cfg(test)]
    pub(crate) async fn from_private(identity: &crate::olm::PrivateCrossSigningIdentity) -> Self {
        let master_key = identity.master_key.lock().await.as_ref().unwrap().public_key.clone();
        let self_signing_key =
            identity.self_signing_key.lock().await.as_ref().unwrap().public_key.clone();
        let user_signing_key =
            identity.user_signing_key.lock().await.as_ref().unwrap().public_key.clone();

        Self {
            user_id: identity.user_id().into(),
            master_key,
            self_signing_key,
            user_signing_key,
            verified: Arc::new(AtomicBool::new(false)),
        }
    }

    /// Get the user id of this identity.
    pub fn user_id(&self) -> &UserId {
        &self.user_id
    }

    /// Get the public master key of the identity.
    pub fn master_key(&self) -> &MasterPubkey {
        &self.master_key
    }

    /// Get the public self-signing key of the identity.
    pub fn self_signing_key(&self) -> &SelfSigningPubkey {
        &self.self_signing_key
    }

    /// Get the public user-signing key of the identity.
    pub fn user_signing_key(&self) -> &UserSigningPubkey {
        &self.user_signing_key
    }

    /// Check if the given identity has been signed by this identity.
    ///
    /// # Arguments
    ///
    /// * `identity` - The identity of another user that we want to check if
    /// it's has been signed.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub(crate) fn is_identity_signed(
        &self,
        identity: &ReadOnlyUserIdentity,
    ) -> Result<(), SignatureError> {
        self.user_signing_key.verify_master_key(&identity.master_key)
    }

    /// Check if the given device has been signed by this identity.
    ///
    /// Only devices of our own user should be checked with this method, if a
    /// device of a different user is given the signature check will always fail
    /// even if a valid signature exists.
    ///
    /// # Arguments
    ///
    /// * `device` - The device that should be checked for a valid signature.
    ///
    /// Returns an empty result if the signature check succeeded, otherwise a
    /// SignatureError indicating why the check failed.
    pub(crate) fn is_device_signed(&self, device: &ReadOnlyDevice) -> Result<(), SignatureError> {
        if self.user_id() != device.user_id() {
            return Err(SignatureError::UserIdMismatch);
        }

        self.self_signing_key.verify_device(device)
    }

    /// Mark our identity as verified.
    pub fn mark_as_verified(&self) {
        self.verified.store(true, Ordering::SeqCst)
    }

    #[cfg(test)]
    pub fn mark_as_unverified(&self) {
        self.verified.store(false, Ordering::SeqCst)
    }

    /// Check if our identity is verified.
    pub fn is_verified(&self) -> bool {
        self.verified.load(Ordering::SeqCst)
    }

    /// Update the identity with a new master key and self signing key.
    ///
    /// Note: This will reset the verification state if the master keys differ.
    ///
    /// # Arguments
    ///
    /// * `master_key` - The new master key of the user identity.
    ///
    /// * `self_signing_key` - The new self signing key of user identity.
    ///
    /// * `user_signing_key` - The new user signing key of user identity.
    ///
    /// Returns a `SignatureError` if we failed to update the identity.
    /// Otherwise, returns `true` if there was a change to the identity and
    /// `false` if the identity is unchanged.
    pub(crate) fn update(
        &mut self,
        master_key: MasterPubkey,
        self_signing_key: SelfSigningPubkey,
        user_signing_key: UserSigningPubkey,
    ) -> Result<bool, SignatureError> {
        master_key.verify_subkey(&self_signing_key)?;
        master_key.verify_subkey(&user_signing_key)?;

        let old = self.clone();

        self.self_signing_key = self_signing_key;
        self.user_signing_key = user_signing_key;

        if self.master_key != master_key {
            self.verified.store(false, Ordering::SeqCst);
        }

        self.master_key = master_key;

        Ok(old != *self)
    }

    fn filter_devices_to_request(
        &self,
        devices: HashMap<OwnedDeviceId, ReadOnlyDevice>,
        own_device_id: &DeviceId,
    ) -> Vec<OwnedDeviceId> {
        devices
            .into_iter()
            .filter_map(|(device_id, device)| {
                (device_id != own_device_id && self.is_device_signed(&device).is_ok())
                    .then_some(device_id)
            })
            .collect()
    }
}

#[cfg(any(test, feature = "testing"))]
pub(crate) mod testing {
    //! Testing Facilities
    #![allow(dead_code)]
    use ruma::{api::client::keys::get_keys::v3::Response as KeyQueryResponse, user_id};

    use super::{ReadOnlyOwnUserIdentity, ReadOnlyUserIdentity};
    #[cfg(test)]
    use crate::{identities::manager::testing::other_user_id, olm::PrivateCrossSigningIdentity};
    use crate::{
        identities::{
            manager::testing::{other_key_query, own_key_query},
            ReadOnlyDevice,
        },
        types::CrossSigningKey,
    };

    /// Generate test devices from KeyQueryResponse
    pub fn device(response: &KeyQueryResponse) -> (ReadOnlyDevice, ReadOnlyDevice) {
        let mut devices = response.device_keys.values().next().unwrap().values();
        let first =
            ReadOnlyDevice::try_from(&devices.next().unwrap().deserialize_as().unwrap()).unwrap();
        let second =
            ReadOnlyDevice::try_from(&devices.next().unwrap().deserialize_as().unwrap()).unwrap();
        (first, second)
    }

    /// Generate ReadOnlyOwnUserIdentity from KeyQueryResponse for testing
    pub fn own_identity(response: &KeyQueryResponse) -> ReadOnlyOwnUserIdentity {
        let user_id = user_id!("@example:localhost");

        let master_key: CrossSigningKey =
            response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let user_signing: CrossSigningKey =
            response.user_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let self_signing: CrossSigningKey =
            response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();

        ReadOnlyOwnUserIdentity::new(
            master_key.try_into().unwrap(),
            self_signing.try_into().unwrap(),
            user_signing.try_into().unwrap(),
        )
        .unwrap()
    }

    /// Generate default own identity for tests
    pub fn get_own_identity() -> ReadOnlyOwnUserIdentity {
        own_identity(&own_key_query())
    }

    /// Generate default other "own" identity for tests
    #[cfg(test)]
    pub async fn get_other_own_identity() -> ReadOnlyOwnUserIdentity {
        let private_identity = PrivateCrossSigningIdentity::new(other_user_id().into());
        ReadOnlyOwnUserIdentity::from_private(&private_identity).await
    }

    /// Generate default other identify for tests
    pub fn get_other_identity() -> ReadOnlyUserIdentity {
        let user_id = user_id!("@example2:localhost");
        let response = other_key_query();

        let master_key: CrossSigningKey =
            response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let self_signing: CrossSigningKey =
            response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();

        ReadOnlyUserIdentity::new(master_key.try_into().unwrap(), self_signing.try_into().unwrap())
            .unwrap()
    }
}

#[cfg(test)]
pub(crate) mod tests {
    use std::{collections::HashMap, sync::Arc};

    use assert_matches::assert_matches;
    use matrix_sdk_test::async_test;
    use ruma::{device_id, user_id};
    use serde_json::{json, Value};
    use tokio::sync::Mutex;

    use super::{
        testing::{device, get_other_identity, get_own_identity},
        ReadOnlyOwnUserIdentity, ReadOnlyUserIdentities,
    };
    use crate::{
        identities::{manager::testing::own_key_query, Device},
        olm::{Account, PrivateCrossSigningIdentity},
        store::{CryptoStoreWrapper, MemoryStore},
        types::{CrossSigningKey, MasterPubkey, SelfSigningPubkey, Signatures, UserSigningPubkey},
        verification::VerificationMachine,
    };

    #[test]
    fn own_identity_create() {
        let user_id = user_id!("@example:localhost");
        let response = own_key_query();

        let master_key: CrossSigningKey =
            response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let user_signing: CrossSigningKey =
            response.user_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let self_signing: CrossSigningKey =
            response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();

        ReadOnlyOwnUserIdentity::new(
            master_key.try_into().unwrap(),
            self_signing.try_into().unwrap(),
            user_signing.try_into().unwrap(),
        )
        .unwrap();
    }

    #[test]
    fn own_identity_partial_equality() {
        let user_id = user_id!("@example:localhost");
        let response = own_key_query();

        let master_key: CrossSigningKey =
            response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let user_signing: CrossSigningKey =
            response.user_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
        let self_signing: CrossSigningKey =
            response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();

        let identity = ReadOnlyOwnUserIdentity::new(
            master_key.clone().try_into().unwrap(),
            self_signing.clone().try_into().unwrap(),
            user_signing.clone().try_into().unwrap(),
        )
        .unwrap();

        let mut master_key_updated_signature = master_key.clone();
        master_key_updated_signature.signatures = Signatures::new();

        let updated_identity = ReadOnlyOwnUserIdentity::new(
            master_key_updated_signature.try_into().unwrap(),
            self_signing.try_into().unwrap(),
            user_signing.try_into().unwrap(),
        )
        .unwrap();

        assert_ne!(identity, updated_identity);
        assert_eq!(identity.master_key(), updated_identity.master_key());
    }

    #[test]
    fn other_identity_create() {
        get_other_identity();
    }

    #[test]
    fn own_identity_check_signatures() {
        let response = own_key_query();
        let identity = get_own_identity();
        let (first, second) = device(&response);

        identity.is_device_signed(&first).unwrap_err();
        identity.is_device_signed(&second).unwrap();

        let private_identity =
            Arc::new(Mutex::new(PrivateCrossSigningIdentity::empty(second.user_id())));
        let verification_machine = VerificationMachine::new(
            Account::with_device_id(second.user_id(), second.device_id()).static_data,
            private_identity,
            Arc::new(CryptoStoreWrapper::new(second.user_id(), MemoryStore::new())),
        );

        let first = Device {
            inner: first,
            verification_machine: verification_machine.clone(),
            own_identity: Some(identity.clone()),
            device_owner_identity: Some(ReadOnlyUserIdentities::Own(identity.clone())),
        };

        let second = Device {
            inner: second,
            verification_machine,
            own_identity: Some(identity.clone()),
            device_owner_identity: Some(ReadOnlyUserIdentities::Own(identity.clone())),
        };

        assert!(!second.is_locally_trusted());
        assert!(!second.is_cross_signing_trusted());

        assert!(!first.is_locally_trusted());
        assert!(!first.is_cross_signing_trusted());

        identity.mark_as_verified();
        assert!(second.is_verified());
        assert!(!first.is_verified());
    }

    #[async_test]
    async fn own_device_with_private_identity() {
        let response = own_key_query();
        let (_, device) = device(&response);

        let account = Account::with_device_id(device.user_id(), device.device_id());
        let (identity, _, _) = PrivateCrossSigningIdentity::with_account(&account).await;

        let id = Arc::new(Mutex::new(identity.clone()));

        let verification_machine = VerificationMachine::new(
            Account::with_device_id(device.user_id(), device.device_id()).static_data,
            id.clone(),
            Arc::new(CryptoStoreWrapper::new(device.user_id(), MemoryStore::new())),
        );

        let public_identity = identity.to_public_identity().await.unwrap();

        let mut device = Device {
            inner: device,
            verification_machine: verification_machine.clone(),
            own_identity: Some(public_identity.clone()),
            device_owner_identity: Some(public_identity.clone().into()),
        };

        assert!(!device.is_verified());

        let mut device_keys = device.as_device_keys().to_owned();

        identity.sign_device_keys(&mut device_keys).await.unwrap();
        device.inner.update_device(&device_keys).expect("Couldn't update newly signed device keys");
        assert!(device.is_verified());
    }

    /// Test that `CrossSigningKey` instances without a correct `usage` cannot
    /// be deserialized into high-level structs representing the MSK, SSK
    /// and USK.
    #[test]
    fn cannot_instantiate_keys_with_incorrect_usage() {
        let user_id = user_id!("@example:localhost");
        let response = own_key_query();

        let master_key = response.master_keys.get(user_id).unwrap();
        let mut master_key_json: Value = master_key.deserialize_as().unwrap();
        let self_signing_key = response.self_signing_keys.get(user_id).unwrap();
        let mut self_signing_key_json: Value = self_signing_key.deserialize_as().unwrap();
        let user_signing_key = response.user_signing_keys.get(user_id).unwrap();
        let mut user_signing_key_json: Value = user_signing_key.deserialize_as().unwrap();

        // Delete the usages.
        let usage = master_key_json.get_mut("usage").unwrap();
        *usage = json!([]);
        let usage = self_signing_key_json.get_mut("usage").unwrap();
        *usage = json!([]);
        let usage = user_signing_key_json.get_mut("usage").unwrap();
        *usage = json!([]);

        // It should now be impossible to deserialize the keys into their corresponding
        // high-level cross-signing key structs.
        assert_matches!(serde_json::from_value::<MasterPubkey>(master_key_json.clone()), Err(_));
        assert_matches!(
            serde_json::from_value::<SelfSigningPubkey>(self_signing_key_json.clone()),
            Err(_)
        );
        assert_matches!(
            serde_json::from_value::<UserSigningPubkey>(user_signing_key_json.clone()),
            Err(_)
        );

        // Add additional usages.
        let usage = master_key_json.get_mut("usage").unwrap();
        *usage = json!(["master", "user_signing"]);
        let usage = self_signing_key_json.get_mut("usage").unwrap();
        *usage = json!(["self_signing", "user_signing"]);
        let usage = user_signing_key_json.get_mut("usage").unwrap();
        *usage = json!(["user_signing", "self_signing"]);

        // It should still be impossible to deserialize the keys into their
        // corresponding high-level cross-signing key structs.
        assert_matches!(serde_json::from_value::<MasterPubkey>(master_key_json.clone()), Err(_));
        assert_matches!(
            serde_json::from_value::<SelfSigningPubkey>(self_signing_key_json.clone()),
            Err(_)
        );
        assert_matches!(
            serde_json::from_value::<UserSigningPubkey>(user_signing_key_json.clone()),
            Err(_)
        );
    }

    #[test]
    fn filter_devices_to_request() {
        let response = own_key_query();
        let identity = get_own_identity();
        let (first, second) = device(&response);

        let second_device_id = second.device_id().to_owned();
        let unknown_device_id = device_id!("UNKNOWN");

        let devices = HashMap::from([
            (first.device_id().to_owned(), first),
            (second.device_id().to_owned(), second),
        ]);

        // Own device and devices not verified are filtered out.
        assert_eq!(identity.filter_devices_to_request(devices.clone(), &second_device_id).len(), 0);
        // Signed devices that are not our own are kept.
        assert_eq!(
            identity.filter_devices_to_request(devices, unknown_device_id),
            [second_device_id]
        );
    }
}