1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
//!
//!Traits for sets with a single binary operation and various properties of that operation
//!
//!Currently, the group operation is interpreted as being either the [`Add`] or [`Mul`] operation,
//!and each of the group properties in this module have both an additive and multiplicative variant.
//!
//!As it stands currently, there is no real difference between the two, so it is ultimately up
//!to the implementor's preference which one (or both) to use. However, obviously, addition and multiplication
//!carry difference connotations in different contexts, so for clarity and consistency it is
//!suggested to try to follow the general mathematical or programming conventions whenever possible.
//!In particular:
//!* Try to use multiplication for single operation structures
//!except when convention dictates otherwise (such as the case of string concatenation).
//!* While the option does exist, avoid implementing a non-commutative or especially a non-associative
//!addition operation unless convention dictates otherwise.
//!* Avoid implementing both an addition and multiplication where the multiplication *doesn't* distrubute
//!or where the addition distributes instead.
//!
//!# Implementation
//!
//!The inclusion of a particular struct into a group-like trait will depend on its implementation
//!of the following properties:
//!* An additive or multiplicative binary operation:
//!    * Has some function taking any pair of elements from `Self` and outputing any other member of `Self`
//!    * Represented with either [`Add`] and [`AddAssign`] or [`Mul`] and [`MulAssign`] from [`std::ops`]
//!    * (Note that for the auto-implementing categorization traits to work, the corresponding
//!      "Assign" traits must be implemented.)
//!* An identity element:
//!    * Contains a unique element `0` or `1` such that `0+x=x` and `x+0=x` or
//!     `1*x=x`,`x*1=x` for all `x`
//!    * Represented with either [`Zero`] or [`One`] from [`num_traits`]
//!* Invertibility:
//!    * For every `x` in the set, there exists some other `y` in the struct such that
//!     `x*y=1` and `y*x=1` (or `x+y=0` and `y+x=0` if additive), and there exists
//!     a corresponding inverse operation.
//!    * Represented with either [`Neg`], [`Sub`], and [`SubAssign`] or [`Inv`], [`Div`], and [`DivAssign`]
//!      from [`std::ops`] and [`num_traits`]
//!    * Note, again, that the "Assign" variants are required
//!* Commutative:
//!    * If the operation is order invariant, ie `x+y=y+x` or `x*y=y*x` for all `x` and `y`.
//!    * Represented with [`AddCommutative`] or [`MulCommutative`]
//!* Associative:
//!    * If operation sequences are _evaluation_ order invariant, ie `x+(y+z)=(x+y)+z` or `x*(y*z)=(x*y)*z`
//!     for all `x`, `y`, and `z`.
//!    * Represented with [`AddAssociative`] or [`MulAssociative`]
//!
//!# Exponentiation
//!
//!In addition to these traits, it may be desirable to implement a [multiplication](Mul) or
//![exponentiation](num_traits::Pow) operation with particular [integers](::algebra::Integer)
//!or [naturals](::algebra::Natural). See [`MulN`], [`MulZ`], [`PowN`], and [`PowZ`] for more details.
//!
//!# Usage
//!
//!Structs with these properties implemented will be automatically added to a number of categorization
//!traits for various mathematical sets. These traits all have additive and multiplicative variants
//!and fit into a heirarchy of mathematical structures as such:
//!``` ignore
//!    ---Magma---
//!    |         |
//!    |     Semigroup
//!   Loop       |
//!    |      Monoid
//!    |         |
//!    ---Group---
//!         |
//!   Abelian Group
//!```
//!where:
//!* A [Magma](MulMagma) is a set with any binary operation
//!* A [Semigroup](MulSemigroup) is an [associative](MulAssociative) Magma
//!* A [Monoid](MulMonoid) is a Semigroup with an [identity](One) element
//!* A [Loop](MulLoop) is a Magma with an [identity](One) element and [inverses](Invertable)
//!* A [Group](MulGroup) is a Monoid with [inverses](Invertable), or alternatively, an [associative](MulAssociative) Loop
//!* An [Abelian Group](MulAbelianGroup) is a [commutative](MulCommutative) Group
//!

pub use self::additive::*;
pub use self::multiplicative::*;

//Note: we do not have additive or multiplicative quasigroups because some types
//override operators while guarranteeing too little.
//For example, to have a multiplicative quasigroup, we'd need true division, but all
//primitive int types have a division operation that is mathematically incorrect
//(even if convenient). So the best way to weed these out is with the inv trait, but
//*technically* there may not be true "inverses" in quasigroups. But whatever, quasigroups aren't
//particularly useful anyway

///Traits for group-like structures using addition
pub mod additive {
    pub use core::ops::{Add, Sub, Neg, AddAssign, SubAssign};
    pub use num_traits::{Zero};
    use core::convert::{From};
    use core::ops::{Mul};

    use super::{repeated_doubling, repeated_doubling_neg};
    use algebra::{Natural, IntegerSubset, Semiring, Ring};

    #[allow(unused_imports)] use algebra::Integer;

    ///
    ///A marker trait for stucts whose addition operation is evaluation order independent,
    ///ie `x+(y+z)=(x+y)+z` for all `x`, `y`, and `z`.
    ///
    ///This is an extremely common property, and _most_ commonly used algebraic systems have it.
    ///Nonetheless, there are some algebraic constructions like loop concatenation, the cross product,
    ///lie algebras, and octonions that do not have this property, so the option to _not_ implement it exists.
    ///
    ///Note however, it is _highly_ recommended to implement non-associative structs as multiplicative
    ///to be consistent with convention.
    ///
    pub trait AddAssociative {}

    ///
    ///A marker trait for stucts whose addition operation is order independent,
    ///ie `x+y=y+x` for all `x`, `y`, and `z`.
    ///
    ///This is an extremely common property, and _most_ commonly used algebraic systems have it.
    ///Nonetheless, there are also a fairly number of algebraic constructions do not, such as
    ///matrix multiplication, most finite groups, and in particular, string concatenation.
    ///
    ///Note however, it is _highly_ recommended to implement non-commutative structs
    ///(except string concatentation) as multiplicative to be consistent with convention.
    ///
    pub trait AddCommutative {}

    ///
    ///An auto-implemented trait for multiplication by [natural numbers](Natural) with
    ///[associative](AddAssociative) types using repeated addition
    ///
    ///This is intended as a simple and easy way to compute object multiples in abstract algebraic
    ///algorithms without resorting to explicitly applying addition repeatedly. For this reason, the
    ///trait is automatically implemented for any relevant associative algebraic structure and
    ///the supplied function is generic over the [`Natural`] type.
    ///
    ///```
    ///# use math_traits::algebra::*;
    ///
    /// assert_eq!(2.5f32.mul_n(4u8), 10.0);
    /// assert_eq!(2.5f32.mul_n(4u16), 10.0);
    /// assert_eq!(2.5f32.mul_n(4u128), 10.0);
    /// assert_eq!(2.5f64.mul_n(4u8), 10.0);
    /// assert_eq!(2.5f64.mul_n(4u16), 10.0);
    /// assert_eq!(2.5f64.mul_n(4u128), 10.0);
    ///
    ///```
    ///
    ///Note, however, that while multiplication by natural numbers is very simply defined using
    ///repeated addition, in order to add flexibility in implementation and the possibility for
    ///proper optimization, the automatic implmentation of this trait will first try to use other
    ///traits as a base before defaulting to the general [repeated_doubling] algorithm
    ///
    ///Specifically, for a given [Natural] type `N`, the auto-impl will first attempt to use
    ///[`Mul<N>`](Mul), if implemented. If that fails, it will then try to convert using [`From<N>`](From)
    ///and multiplying if if it implemented and the struct is a [Semiring].
    ///Finally, in the general case, it will use the [repeated_doubling] function.
    ///
    pub trait MulN: AddSemigroup + Zero {
        #[inline]
        fn mul_n<N:Natural>(self, n:N) -> Self {

            trait Helper1<Z:Natural>: AddSemigroup + Zero { fn _mul1(self, n:Z) -> Self; }
            impl<H: AddSemigroup + Zero, Z:Natural> Helper1<Z> for H {
                #[inline] default fn _mul1(self, n:Z) -> Self {self._mul2(n)}
            }
            impl<H: AddSemigroup + Zero + Mul<Z,Output=H>, Z:Natural> Helper1<Z> for H {
                #[inline] fn _mul1(self, n:Z) -> Self {self * n}
            }

            trait Helper2<Z:Natural>: AddSemigroup + Zero { fn _mul2(self, n:Z) -> Self; }
            impl<H: AddSemigroup + Zero, Z:Natural> Helper2<Z> for H {
                #[inline] default fn _mul2(self, n:Z) -> Self {repeated_doubling(self, n)}
            }
            impl<H: Semiring + From<Z>, Z:Natural> Helper2<Z> for H {
                #[inline] fn _mul2(self, n:Z) -> Self {H::from(n) * self}
            }

            self._mul1(n)
        }
    }

    impl<G:AddSemigroup + Zero> MulN for G {}

    ///
    ///An auto-implemented trait for multiplication by [integers](Integer) with
    ///[associative](AddAssociative) and [negatable](Negatable) types using
    ///negation and repeated addition
    ///
    ///This is intended as a simple and easy way to compute object multiples in abstract algebraic
    ///algorithms without resorting to explicitly applying addition repeatedly. For this reason, the
    ///trait is automatically implemented for any relevant associative and negatable algebraic structure and
    ///the supplied function is generic over the [`Integer`] type.
    ///
    ///```
    ///# use math_traits::algebra::*;
    ///
    /// assert_eq!(2.5f32.mul_z(5u8), 12.5);
    /// assert_eq!(2.5f32.mul_z(5u128), 12.5);
    /// assert_eq!(2.5f64.mul_z(5u8), 12.5);
    /// assert_eq!(2.5f64.mul_z(5u128), 12.5);
    /// assert_eq!(2.5f32.mul_z(-5i8), -12.5);
    /// assert_eq!(2.5f32.mul_z(-5i64), -12.5);
    ///
    ///```
    ///
    ///Note, however, that while multiplication by integers is very simply defined using
    ///repeated addition and subtraction, in order to add flexibility in implementation and the possibility for
    ///proper optimization, the automatic implmentation of this trait will first try to use other
    ///traits as a base before defaulting to the general [repeated_doubling_neg] algorithm
    ///
    ///Specifically, for a given [Integer] type `Z`, the auto-impl will first attempt to use
    ///[`Mul<Z>`](Mul), if implemented. If that fails, it will then try to convert using [`From<Z>`](From)
    ///and multiplying if if it implemented and the struct is a [Ring].
    ///Finally, in the general case, it will use the [repeated_doubling_neg] function.
    ///
    pub trait MulZ: AddMonoid + Negatable {
        #[inline]
        fn mul_z<N:IntegerSubset>(self, n:N) -> Self {

            trait Helper1<Z:IntegerSubset>: AddMonoid + Negatable { fn _mul1(self, n:Z) -> Self; }
            impl<H: AddMonoid + Negatable, Z:IntegerSubset> Helper1<Z> for H {
                #[inline] default fn _mul1(self, n:Z) -> Self {self._mul2(n)}
            }
            impl<H: AddMonoid + Negatable + Mul<Z,Output=H>, Z:IntegerSubset> Helper1<Z> for H {
                #[inline] fn _mul1(self, n:Z) -> Self {self * n}
            }

            trait Helper2<Z:IntegerSubset>: AddSemigroup + Zero { fn _mul2(self, n:Z) -> Self; }
            impl<H: AddMonoid + Negatable, Z:IntegerSubset> Helper2<Z> for H {
                #[inline] default fn _mul2(self, n:Z) -> Self {repeated_doubling_neg(self, n)}
            }
            impl<H: Ring + From<Z>, Z:IntegerSubset> Helper2<Z> for H {
                #[inline] fn _mul2(self, n:Z) -> Self {H::from(n) * self}
            }

            self._mul1(n)
        }
    }

    impl<G:AddMonoid + Negatable> MulZ for G {}

    auto!{

        ///A set with an fully described additive inverse
        pub trait Negatable = Sized + Clone + Neg<Output=Self> + Sub<Self, Output=Self> + SubAssign<Self>;

        ///A set with an addition operation
        pub trait AddMagma = Sized + Clone + Add<Self,Output=Self> + AddAssign<Self>;
        ///An associative additive magma
        pub trait AddSemigroup = AddMagma + AddAssociative;
        ///An additive semigroup with an identity element
        pub trait AddMonoid = AddSemigroup + Zero + MulN;
        ///An additive magma with an inverse operation and identity
        pub trait AddLoop = AddMagma + Negatable + Zero;
        ///An additive monoid with an inverse operation
        pub trait AddGroup = AddMagma + AddAssociative + Negatable + Zero + MulZ;
        ///A commutative additive group
        pub trait AddAbelianGroup = AddGroup + AddCommutative;

    }

}

///Traits for group-like structures using Multiplication
pub mod multiplicative {
    pub use core::ops::{Mul, Div, MulAssign, DivAssign};
    pub use num_traits::{Inv, One};
    use num_traits::Pow;

    use super::{repeated_squaring, repeated_squaring_inv};
    use algebra::{Natural, IntegerSubset};

    #[allow(unused_imports)] use algebra::Integer;

    ///
    ///A marker trait for stucts whose multiplication operation is evaluation order independent,
    ///ie `x*(y*z)=(x*y)*z` for all `x`, `y`, and `z`.
    ///
    ///This is an extremely common property, and _most_ commonly used algebraic systems have it.
    ///Nonetheless, there are some algebraic constructions like loop concatenation, the cross product,
    ///lie algebras, and octonions that do not have this property, so the option to _not_ implement it exists.
    ///
    pub trait MulAssociative: {}

    ///
    ///A marker trait for stucts whose addition operation is order independent,
    ///ie `x+y=y+x` for all `x`, `y`, and `z`.
    ///
    ///This is an extremely common property, and _most_ commonly used algebraic systems have it.
    ///Nonetheless, there are also a fairly number of algebraic constructions do not, such as
    ///matrix multiplication and most finite groups.
    ///
    pub trait MulCommutative {}

    ///
    ///An auto-implemented trait for exponentiation by [natural numbers](Natural) with
    ///[associative](MulAssociative) types using repeated multiplication
    ///
    ///This is intended as a simple and easy way to compute object powers in abstract algebraic
    ///algorithms without resorting to explicitly applying multiplication repeatedly. For this reason, the
    ///trait is automatically implemented for any relevant associative algebraic structure and
    ///the supplied function is generic over the [`Natural`] type.
    ///
    ///```
    ///# use math_traits::algebra::*;
    ///
    /// assert_eq!(2.0f32.pow_n(4u8), 16.0);
    /// assert_eq!(2.0f32.pow_n(4u16), 16.0);
    /// assert_eq!(2.0f32.pow_n(4u128), 16.0);
    /// assert_eq!(2.0f64.pow_n(4u8), 16.0);
    /// assert_eq!(2.0f64.pow_n(4u16), 16.0);
    /// assert_eq!(2.0f64.pow_n(4u128), 16.0);
    ///
    ///```
    ///
    ///Note, however, that while exponentiation by natural numbers is very simply defined using
    ///repeated multiplication, in order to add flexibility in implementation and the possibility for
    ///proper optimization, the automatic implmentation of this trait will first try to use other
    ///traits as a base before defaulting to the general [repeated_squaring] algorithm
    ///
    ///Specifically, for a given [Natural] type `N`, the auto-impl will first attempt to use
    ///[`Pow<N>`](Pow), if implemented, then if that fails, it will use the general
    ///[repeated_squaring] algorithm
    ///
    pub trait PowN: MulSemigroup + One {
        #[inline]
        fn pow_n<N:Natural>(self, n:N) -> Self {
            trait Helper<Z:Natural>: MulSemigroup + One { fn _pow_n(self, n:Z) -> Self; }
            impl<G:MulSemigroup+One, Z:Natural> Helper<Z> for G {
                #[inline] default fn _pow_n(self, n:Z) -> Self {repeated_squaring(self, n)}
            }
            impl<G:MulSemigroup+One+Pow<Z,Output=Self>, Z:Natural> Helper<Z> for G {
                #[inline] fn _pow_n(self, n:Z) -> Self {self.pow(n)}
            }

            self._pow_n(n)
        }
    }
    impl<G:MulSemigroup+One> PowN for G {}

    ///
    ///An auto-implemented trait for exponentiation by [integers](Integer) with
    ///[associative](MulAssociative) and [invertable](Invertable) types using
    ///inversion and repeated multiplication
    ///
    ///This is intended as a simple and easy way to compute object powers in abstract algebraic
    ///algorithms without resorting to explicitly applying multiplication repeatedly. For this reason, the
    ///trait is automatically implemented for any relevant associative and invertable algebraic structure and
    ///the supplied function is generic over the [`Integer`] type.
    ///
    ///```
    ///# use math_traits::algebra::*;
    ///
    /// assert_eq!(2.0f32.pow_z(3u8), 8.0);
    /// assert_eq!(2.0f32.pow_z(3u128), 8.0);
    /// assert_eq!(2.0f64.pow_z(3u8), 8.0);
    /// assert_eq!(2.0f64.pow_z(3u128), 8.0);
    /// assert_eq!(2.0f32.pow_z(-3i8), 0.125);
    /// assert_eq!(2.0f32.pow_z(-3i64), 0.125);
    ///
    ///```
    ///
    ///Note, however, that while exponentiation by integers is very simply defined using
    ///repeated multiplication and inversion, in order to add flexibility in implementation and the possibility for
    ///proper optimization, the automatic implmentation of this trait will first try to use other
    ///traits as a base before defaulting to the general [repeated_squaring_inv] algorithm
    ///
    ///Specifically, for a given [Natural] type `N`, the auto-impl will first attempt to use
    ///[`Pow<N>`](Pow), if implemented, then if that fails, it will use the general
    ///[repeated_squaring_inv] algorithm
    ///
    pub trait PowZ: MulMonoid + Invertable {
        #[inline]
        fn pow_z<Z:IntegerSubset>(self, n:Z) -> Self {
            trait Helper<N:IntegerSubset>: MulMonoid + Invertable { fn _pow_z(self, n:N) -> Self; }
            impl<G:MulMonoid+Invertable, N:IntegerSubset> Helper<N> for G {
                #[inline] default fn _pow_z(self, n:N) -> Self {repeated_squaring_inv(self, n)}
            }
            impl<G:MulMonoid+Invertable+Pow<N,Output=Self>, N:IntegerSubset> Helper<N> for G {
                #[inline] fn _pow_z(self, n:N) -> Self {self.pow(n)}
            }

            self._pow_z(n)
        }
    }
    impl<G:MulMonoid+Invertable> PowZ for G {}


    auto!{

        ///A set with an fully described multiplicative inverse
        pub trait Invertable = Sized + Clone + Inv<Output=Self> + Div<Self, Output=Self> + DivAssign<Self>;

        ///A set with a multiplication operation
        pub trait MulMagma = Sized + Clone + Mul<Self, Output=Self> + MulAssign<Self>;
        ///An associative multiplicative magma
        pub trait MulSemigroup = MulMagma + MulAssociative;
        ///A multiplicative semigroup with an identity element
        pub trait MulMonoid = MulSemigroup + One + PowN;
        ///A multiplicative magma with an inverse operation and identity
        pub trait MulLoop = MulMagma + Invertable + One;
        ///A multiplicative monoid with an inverse operation
        pub trait MulGroup = MulMagma + MulAssociative + Invertable + One + PowZ;
        ///A commutative multiplicative group
        pub trait MulAbelianGroup = MulGroup + MulCommutative;

    }



}

use algebra::{Natural, IntegerSubset};

trait IsZero:Sized { fn _is_zero(&self) -> bool; }
impl<Z> IsZero for Z { #[inline(always)] default fn _is_zero(&self) -> bool {false} }
impl<Z:Zero> IsZero for Z { #[inline(always)] fn _is_zero(&self) -> bool {self.is_zero()} }

fn mul_pow_helper<E:Natural, R:Clone, Op: Fn(R,R) -> R>(mut b: R, mut p: E, op: Op) -> R {
    //repeated squaring/doubling
    let mut res = b.clone();
    p -= E::one();
    while !p.is_zero() {
        if p.even() {
            //if the exponent (or multiple) is even, we can factor out the two
            //ie b^2p = (b^2)^p or 2p*b = p*2b
            b = op(b.clone(), b);
            p = p.div_two();
        } else {
            //else b^(p+1)=(b^p)*b or (p+1)*b = p*b + b
            res = op(res, b.clone());
            p -= E::one();
        }
    }
    res
}

///
///Raises a [monoid](MulMonoid) element to a integral power using inversion and repeated squaring
///
///# Panics
///If both the base and power are `0`
///
#[inline]
pub fn repeated_squaring_inv<E:IntegerSubset, R:MulGroup+Clone>(b: R, p: E) -> R {
    if p.negative() {
        repeated_squaring(b, p.abs().as_unsigned()).inv()
    } else {
        repeated_squaring(b, p.as_unsigned())
    }
}

///
///Raises a [monoid](MulMonoid) element to a positive integer power using the repeated squaring algorithm
///
///# Panics
///If both the base and power are `0`
///
#[inline]
pub fn repeated_squaring<E:Natural, R:MulMonoid+Clone>(b: R, p: E) -> R {
    if p.is_zero() {
        if b._is_zero() { panic!("Attempted to raise 0^0") }
        R::one()
    } else {
        mul_pow_helper(b, p, R::mul)
    }
}


///Multiplies a [monoid](AddMonoid) by a positive integer using negation and repeated doublings
#[inline]
pub fn repeated_doubling_neg<E:IntegerSubset, R:AddGroup>(b: R, p: E) -> R {
    if p.negative() {
        -repeated_doubling(b, p.abs().as_unsigned())
    } else {
        repeated_doubling(b, p.as_unsigned())
    }
}

///Multiplies a [monoid](AddMonoid) by a positive integer using repeated doublings
#[inline]
pub fn repeated_doubling<E:Natural, R:AddMonoid>(b: R, p: E) -> R {
    if p.is_zero() {
        R::zero()
    } else {
        mul_pow_helper(b, p, R::add)
    }
}

macro_rules! impl_props {
    ($($z:ty)*; $($f:ty)*) => {
        $(impl_props!(@int $z);)*
        $(impl_props!(@float $f);)*
    };

    (@int $z:ty) => {
        impl_props!(@props $z);
        impl_props!(@props core::num::Wrapping<$z>);
    };
    (@float $f:ty) => {impl_props!(@props $f);};
    (@props $t:ty) => {
        impl AddAssociative for $t {}
        impl AddCommutative for $t {}
        impl MulAssociative for $t {}
        impl MulCommutative for $t {}
    };
}

impl_props!{ usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128; f32 f64 }

impl<'a> AddAssociative for ::std::borrow::Cow<'a,str> {}