1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! # Basic statistical computations

pub mod correlation;

use num::{traits::ToPrimitive, Float};
use std::{
    cmp::{min, Ordering},
    ops::Deref,
};

pub fn n_choose_2(n: usize) -> usize {
    if n < 2 {
        0
    } else {
        n * (n - 1) / 2
    }
}

pub fn kahan_sigma<E, I: Iterator<Item = E>, F, Dtype>(
    element_iterator: I,
    op: F,
) -> Dtype
where
    F: Fn(E) -> Dtype,
    Dtype: Float, {
    // Kahan summation algorithm
    let mut sum = Dtype::zero();
    let mut lower_bits = Dtype::zero();
    for a in element_iterator {
        let y = op(a) - lower_bits;
        let new_sum = sum + y;
        lower_bits = (new_sum - sum) - y;
        sum = new_sum;
    }
    sum
}

pub fn kahan_sigma_return_counter<E, I: Iterator<Item = E>, F, Dtype>(
    element_iterator: I,
    op: F,
) -> (Dtype, usize)
where
    F: Fn(E) -> Dtype,
    Dtype: Float, {
    let mut count = 0usize;
    // Kahan summation algorithm
    let mut sum = Dtype::zero();
    let mut lower_bits = Dtype::zero();
    for a in element_iterator {
        count += 1;
        let y = op(a) - lower_bits;
        let new_sum = sum + y;
        lower_bits = (new_sum - sum) - y;
        sum = new_sum;
    }
    (sum, count)
}

#[inline]
pub fn sum<'a, A, T: Iterator<Item = &'a A>>(element_iterator: T) -> f64
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    kahan_sigma(element_iterator, |a| a.to_f64().unwrap())
}

#[inline]
pub fn sum_f32<'a, A, T: Iterator<Item = &'a A>>(element_iterator: T) -> f32
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    kahan_sigma(element_iterator, |a| a.to_f32().unwrap())
}

#[inline]
pub fn sum_of_squares<'a, A, T: Iterator<Item = &'a A>>(
    element_iterator: T,
) -> f64
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    kahan_sigma(element_iterator, |a| {
        let a_f64 = a.to_f64().unwrap();
        a_f64 * a_f64
    })
}

#[inline]
pub fn sum_of_squares_f32<'a, A, T: Iterator<Item = &'a A>>(
    element_iterator: T,
) -> f32
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    kahan_sigma(element_iterator, |a| {
        let a_f32 = a.to_f32().unwrap();
        a_f32 * a_f32
    })
}

#[inline]
pub fn sum_of_fourth_power_f32<'a, A, T: Iterator<Item = &'a A>>(
    element_iterator: T,
) -> f32
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    kahan_sigma(element_iterator, |a| {
        let a_f32 = a.to_f32().unwrap();
        a_f32 * a_f32 * a_f32 * a_f32
    })
}

#[inline]
pub fn mean<'a, A, T: Iterator<Item = &'a A>>(element_iterator: T) -> f64
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    let (sum, count) =
        kahan_sigma_return_counter(element_iterator, |a| a.to_f64().unwrap());
    sum / count as f64
}

/// `ddof` stands for delta degress of freedom, and the sum of squares will be
/// divided by `count - ddof`, where `count` is the number of elements
/// for population variance, set `ddof` to 0
/// for sample variance, set `ddof` to 1
#[inline]
pub fn variance<'a, T: Clone + Iterator<Item = &'a A>, A>(
    element_iterator: T,
    ddof: usize,
) -> f64
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    let mean = mean(element_iterator.clone());
    let (sum, count) = kahan_sigma_return_counter(element_iterator, move |a| {
        let a_f64 = a.to_f64().unwrap() - mean;
        a_f64 * a_f64
    });
    sum / (count - ddof) as f64
}

/// `ddof` stands for delta degress of freedom, and the sum of squares will be
/// divided by `count - ddof`, where `count` is the number of elements
/// for population standard deviation, set `ddof` to 0
/// for sample standard deviation, set `ddof` to 1
#[inline]
pub fn standard_deviation<'a, T: Clone + Iterator<Item = &'a A>, A>(
    element_iterator: T,
    ddof: usize,
) -> f64
where
    A: Copy + ToPrimitive + 'a,
    &'a A: Deref, {
    variance(element_iterator, ddof).sqrt()
}

/// `percentile_ratio` is `percentile / 100`,
/// e.g. the 90-th percentile corresponds to a `percentile_ratio` of `0.9`.
pub fn percentile_by<T, F>(
    mut numbers: Vec<T>,
    percentile_ratio: f64,
    mut compare: F,
) -> Result<T, String>
where
    T: Clone,
    F: FnMut(&T, &T) -> Ordering, {
    if numbers.len() == 0 || percentile_ratio < 0. || percentile_ratio > 1. {
        return Err("percentile_by received an empty vector".to_string());
    }
    numbers.sort_by(|a, b| compare(a, b));

    Ok(numbers[min(
        (numbers.len() as f64 * percentile_ratio).floor() as usize,
        numbers.len() - 1,
    )]
    .clone())
}

#[cfg(test)]
mod tests {
    use std::iter::{FromIterator, Iterator};

    use rand::{seq::SliceRandom, Rng};

    use super::{
        mean, percentile_by, standard_deviation, sum, sum_of_squares, variance,
    };
    use crate::stats::sum_f32;

    const F64_ERROR_TOLERANCE: f64 = 1e-6;
    const F32_ERROR_TOLERANCE: f32 = 1e-6;

    #[test]
    fn test_sum() {
        let elements = vec![1, 5, 3, 2, 7, 100, 1234, 234, 12, 0, 1234];
        assert_eq!(elements.iter().sum::<i32>() as f64, sum(elements.iter()));
        assert!(
            (elements.iter().sum::<i32>() as f32 - sum_f32(elements.iter()))
                .abs()
                < F32_ERROR_TOLERANCE
        );
    }

    #[test]
    fn test_sum_of_squares() {
        let elements = vec![1, 5, 3, 2, 7, 100];
        assert_eq!(10088f64, sum_of_squares(elements.iter()));
    }

    #[test]
    fn test_mean() {
        let mut numbers = Vec::<i64>::with_capacity(100);
        let mut rng = rand::thread_rng();
        for _ in 0..1000000 {
            numbers.push(rng.gen_range(1, 21));
        }
        assert_eq!(
            numbers.iter().sum::<i64>() as f64 / numbers.len() as f64,
            mean(numbers.iter())
        );
    }

    #[test]
    fn test_variance() {
        let elements =
            vec![1, 5, 123, 5, -345, 467, 568, 1234, -123, -2343, 23];
        assert_eq!(768950.6, variance(elements.iter(), 1));
        assert_eq!(699046.0, variance(elements.iter(), 0));
    }

    #[test]
    fn test_std() {
        let elements = vec![1, 5, 3, 2, 7, 100, 1234, 234, 12, 0, 1234];
        assert_eq!(487.9947466185192, standard_deviation(elements.iter(), 1));
        assert_eq!(465.28473464914003, standard_deviation(elements.iter(), 0));
    }

    #[test]
    fn test_percentile_by() {
        let mut rng = rand::thread_rng();
        {
            let mut v1 =
                vec![-0.2, -0.1, 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7];
            for _ in 0..5 {
                v1.shuffle(&mut rng);
                for i in (0..100).step_by(5) {
                    assert!(
                        ((i / 10) as f64 / 10.
                            - 0.2
                            - percentile_by(
                                v1.clone(),
                                i as f64 / 100.,
                                |a, b| { a.partial_cmp(b).unwrap() }
                            )
                            .unwrap())
                        .abs()
                            < F64_ERROR_TOLERANCE
                    );
                }
            }
        }

        {
            let mut v2 = vec![-2, -1, 0, 1, 2, 3, 4, 5, 6, 7];
            for _ in 0..5 {
                v2.shuffle(&mut rng);
                for i in (0..100).step_by(5) {
                    assert_eq!(
                        (i / 10 - 2),
                        percentile_by(v2.clone(), i as f64 / 100., |a, b| {
                            a.cmp(b)
                        })
                        .unwrap()
                    );
                }
            }
        }

        {
            let mut v3 = Vec::from_iter(-100..900);
            for _ in 0..5 {
                v3.shuffle(&mut rng);
                for i in 0..100 {
                    assert_eq!(
                        (i - 10) * 10,
                        percentile_by(v3.clone(), i as f64 / 100., |a, b| {
                            a.cmp(b)
                        })
                        .unwrap()
                    )
                }
            }
        }
    }
}