1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//! Maps integer intervals to their associated values

use crate::{
    interval::{traits::Interval, I64Interval},
    set::{
        contiguous_integer_set::ContiguousIntegerSet,
        ordered_integer_set::OrderedIntegerSet, traits::Intersect,
    },
    traits::SubsetIndexable,
};
use num::Num;
use std::{collections::BTreeMap, fmt::Debug};

/// Maps `I64Interval`s to values of a numeric type `T`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct IntegerIntervalMap<T> {
    map: BTreeMap<I64Interval, T>,
}

impl<T: Copy + Num> IntegerIntervalMap<T> {
    pub fn new() -> Self {
        IntegerIntervalMap {
            map: BTreeMap::new(),
        }
    }

    /// Adds an integer interval as the `key` with an associated `value`.
    /// Any existing intervals intersecting the `key` will be broken up,
    /// where the region of intersection will have a value being the sum of
    /// the existing value and the new `value`, while the non-intersecting
    /// regions will retain their original values.
    ///
    /// # Example
    /// ```
    /// use math::{
    ///     interval::I64Interval,
    ///     partition::integer_interval_map::IntegerIntervalMap,
    /// };
    ///
    /// //                          | value
    /// // -1 0 1 2 3 4             | +2
    /// //                6 7 8     | +4
    /// //            4 5 6 7       | +1
    /// //---------------------------
    /// //  2 2 2 2 2 3 1 5 5 4     | superposed values
    ///
    /// let mut interval_map = IntegerIntervalMap::new();
    /// interval_map.aggregate(I64Interval::new(-1, 4), 2);
    /// interval_map.aggregate(I64Interval::new(6, 8), 4);
    /// interval_map.aggregate(I64Interval::new(4, 7), 1);
    ///
    /// assert_eq!(interval_map.get(&I64Interval::new(-1, 3)), Some(2));
    /// assert_eq!(interval_map.get(&I64Interval::new(4, 4)), Some(3));
    /// assert_eq!(interval_map.get(&I64Interval::new(5, 5)), Some(1));
    /// assert_eq!(interval_map.get(&I64Interval::new(6, 7)), Some(5));
    /// assert_eq!(interval_map.get(&I64Interval::new(8, 8)), Some(4));
    /// assert_eq!(interval_map.get(&I64Interval::new(-1, 4)), None);
    /// assert_eq!(interval_map.get(&I64Interval::new(6, 8)), None);
    /// assert_eq!(interval_map.get(&I64Interval::new(4, 7)), None);
    /// ```
    pub fn aggregate(&mut self, key: I64Interval, value: T) {
        let (start, end) = key.get_start_and_end();
        let mut remaining_interval =
            OrderedIntegerSet::from_contiguous_integer_sets(vec![key]);
        let mut to_add = Vec::new();
        let mut to_remove = Vec::new();

        // All intervals in the range (start, start)..(end + 1, end + 1)
        // intersect with the key due to the lexicographical ordering of
        // the ContiguousIntegerSet. Furthermore, there can be at most
        // one interval whose start is less than the start of
        // the key, and which intersects the key.
        for (&interval, &val) in self
            .map
            .range(
                ContiguousIntegerSet::new(start, start)
                    ..ContiguousIntegerSet::new(end + 1, end + 1),
            )
            .chain(
                self.map
                    .range(..ContiguousIntegerSet::new(start, start))
                    .rev()
                    .take(1),
            )
        {
            to_remove.push(interval);

            let intersection = interval.intersect(&remaining_interval);
            for &common_interval in intersection.get_intervals_by_ref().iter() {
                remaining_interval -= common_interval;
                to_add.push((common_interval, val + value));
            }
            for outstanding_interval in
                (interval - intersection).into_intervals()
            {
                to_add.push((outstanding_interval, val));
            }
        }
        for i in remaining_interval
            .into_non_empty_intervals()
            .into_intervals()
            .into_iter()
        {
            to_add.push((i, value));
        }

        // remove the old and add the new
        for i in to_remove.into_iter() {
            self.map.remove(&i);
        }
        for (k, v) in to_add.into_iter() {
            self.map.insert(k, v);
        }
    }

    /// # Example
    /// ```
    /// use math::{
    ///     interval::I64Interval,
    ///     partition::integer_interval_map::IntegerIntervalMap,
    /// };
    ///
    /// let mut interval_map = IntegerIntervalMap::new();
    /// interval_map.aggregate(I64Interval::new(-1, 4), 2);
    /// interval_map.aggregate(I64Interval::new(6, 8), 4);
    /// interval_map.aggregate(I64Interval::new(4, 7), 1);
    ///
    /// let expected = vec![
    ///     (I64Interval::new(-1, 3), 2),
    ///     (I64Interval::new(4, 4), 3),
    ///     (I64Interval::new(5, 5), 1),
    ///     (I64Interval::new(6, 7), 5),
    ///     (I64Interval::new(8, 8), 4),
    /// ];
    /// assert_eq!(interval_map.len(), 5);
    /// for ((interval, val), (expected_interval, exptected_val)) in
    ///     interval_map.iter().zip(expected.iter())
    /// {
    ///     assert_eq!(interval, expected_interval);
    ///     assert_eq!(val, exptected_val);
    /// }
    /// ```
    pub fn iter(&self) -> std::collections::btree_map::Iter<I64Interval, T> {
        self.map.iter()
    }

    /// Returns the number of common refinements resulted from aggregating the
    /// intervals
    ///
    /// # Example
    /// ```
    /// use math::{
    ///     interval::I64Interval,
    ///     partition::integer_interval_map::IntegerIntervalMap,
    /// };
    ///
    /// let mut interval_map = IntegerIntervalMap::new();
    /// interval_map.aggregate(I64Interval::new(2, 6), 2.);
    /// interval_map.aggregate(I64Interval::new(4, 8), 2.);
    /// interval_map.aggregate(I64Interval::new(8, 9), 3.);
    ///
    /// // the common refinements are now [2, 3], [4, 6], [7, 7], [8, 8], [9, 9]
    /// assert_eq!(interval_map.len(), 5);
    ///
    /// let expected = vec![
    ///     (I64Interval::new(2, 3), 2.),
    ///     (I64Interval::new(4, 6), 4.),
    ///     (I64Interval::new(7, 7), 2.),
    ///     (I64Interval::new(8, 8), 5.),
    ///     (I64Interval::new(9, 9), 3.),
    /// ];
    ///
    /// for ((interval, val), (expected_interval, exptected_val)) in
    ///     interval_map.iter().zip(expected.iter())
    /// {
    ///     assert_eq!(interval, expected_interval);
    ///     assert_eq!(val, exptected_val);
    /// }
    /// ```
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Converts into the underlying `BTreeMap`
    pub fn into_map(self) -> BTreeMap<I64Interval, T> {
        self.map
    }

    /// Returns a `Some` value only if the key corresponds to one of the current
    /// exact intervals and not its subset or superset.
    ///
    /// # Example
    /// ```
    /// use math::{
    ///     interval::I64Interval,
    ///     partition::integer_interval_map::IntegerIntervalMap,
    /// };
    ///
    /// let mut interval_map = IntegerIntervalMap::new();
    /// interval_map.aggregate(I64Interval::new(2, 5), 1);
    /// assert_eq!(interval_map.get(&I64Interval::new(2, 5)), Some(1));
    /// assert_eq!(interval_map.get(&I64Interval::new(2, 4)), None);
    /// assert_eq!(interval_map.get(&I64Interval::new(2, 6)), None);
    /// ```
    pub fn get(&self, key: &I64Interval) -> Option<T> {
        self.map.get(key).map(|&k| k)
    }
}

impl<T: Copy + Num + Debug> Default for IntegerIntervalMap<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T> IntoIterator for IntegerIntervalMap<T> {
    type IntoIter = <BTreeMap<I64Interval, T> as IntoIterator>::IntoIter;
    type Item = <BTreeMap<I64Interval, T> as IntoIterator>::Item;

    fn into_iter(self) -> Self::IntoIter {
        self.map.into_iter()
    }
}

impl<T> SubsetIndexable<I64Interval, I64Interval> for IntegerIntervalMap<T> {
    fn get_set_containing(&self, subset: &I64Interval) -> Option<I64Interval> {
        let start = subset.get_start();
        // the containing interval must be < (start + 1, start + 1)
        // lexicographically
        for (interval, _) in self
            .map
            .range(..I64Interval::new(start + 1, start + 1))
            .rev()
        {
            if subset.is_subset_of(interval) {
                return Some(*interval);
            }
            if interval.get_end() < start {
                return None;
            }
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        interval::I64Interval, iter::CommonRefinementZip,
        partition::integer_interval_map::IntegerIntervalMap,
    };

    #[test]
    fn test_common_refinement_zip_integer_interval_map() {
        let mut map1 = IntegerIntervalMap::new();
        map1.aggregate(I64Interval::new(1, 5), 1);
        let mut map2 = IntegerIntervalMap::new();
        map2.aggregate(I64Interval::new(3, 6), 2);

        let refined: Vec<(I64Interval, Vec<Option<i32>>)> =
            map1.iter().common_refinement_zip(map2.iter()).collect();

        let expected = vec![
            (I64Interval::new(1, 2), vec![Some(1), None]),
            (I64Interval::new(3, 5), vec![Some(1), Some(2)]),
            (I64Interval::new(6, 6), vec![None, Some(2)]),
        ];
        assert_eq!(refined, expected);
    }
}