1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::arithmetic::shr::limbs_slice_shr_in_place;
use crate::natural::Natural;
use crate::platform::Limb;
use alloc::vec::Vec;
use itertools::Itertools;
use malachite_base::num::arithmetic::traits::Parity;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::conversion::traits::{ExactFrom, WrappingFrom};
use malachite_base::num::logic::traits::{BitAccess, BitConvertible};

impl BitConvertible for Natural {
    /// Returns a [`Vec`] containing the bits of a [`Natural`] in ascending order: least- to
    /// most-significant.
    ///
    /// If the number is 0, the [`Vec`] is empty; otherwise, it ends with `true`.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert!(Natural::ZERO.to_bits_asc().is_empty());
    /// // 105 = 1101001b
    /// assert_eq!(
    ///     Natural::from(105u32).to_bits_asc(),
    ///     &[true, false, false, true, false, true, true]
    /// );
    /// ```
    fn to_bits_asc(&self) -> Vec<bool> {
        let mut bits = Vec::new();
        if *self == 0 {
            return bits;
        }
        let limbs = self.limbs();
        let last_index = usize::exact_from(self.limb_count()) - 1;
        let mut last = limbs[last_index];
        for limb in limbs.take(last_index) {
            for i in 0..Limb::WIDTH {
                bits.push(limb.get_bit(i));
            }
        }
        while last != 0 {
            bits.push(last.odd());
            last >>= 1;
        }
        bits
    }

    /// Returns a [`Vec`] containing the bits of a [`Natural`] in descending order: most- to
    /// least-significant.
    ///
    /// If the number is 0, the [`Vec`] is empty; otherwise, it begins with `true`.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert!(Natural::ZERO.to_bits_desc().is_empty());
    /// // 105 = 1101001b
    /// assert_eq!(
    ///     Natural::from(105u32).to_bits_desc(),
    ///     &[true, true, false, true, false, false, true]
    /// );
    /// ```
    fn to_bits_desc(&self) -> Vec<bool> {
        let mut bits = self.to_bits_asc();
        bits.reverse();
        bits
    }

    /// Converts an iterator of bits into a [`Natural`]. The bits should be in ascending order
    /// (least- to most-significant).
    ///
    /// $$
    /// f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^i \[b_i\],
    /// $$
    /// where braces denote the Iverson bracket, which converts a bit to 0 or 1.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.count()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_nz::natural::Natural;
    /// use core::iter::empty;
    ///
    /// assert_eq!(Natural::from_bits_asc(empty()), 0);
    /// // 105 = 1101001b
    /// assert_eq!(
    ///     Natural::from_bits_asc([true, false, false, true, false, true, true].iter().cloned()),
    ///     105
    /// );
    /// ```
    fn from_bits_asc<I: Iterator<Item = bool>>(xs: I) -> Natural {
        Natural::from_owned_limbs_asc(
            xs.chunks(usize::wrapping_from(Limb::WIDTH))
                .into_iter()
                .map(Limb::from_bits_asc)
                .collect(),
        )
    }

    /// Converts an iterator of bits into a [`Natural`]. The bits should be in descending order
    /// (most- to least-significant).
    ///
    /// $$
    /// f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^{k-i-1} \[b_i\],
    /// $$
    /// where braces denote the Iverson bracket, which converts a bit to 0 or 1.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.count()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_nz::natural::Natural;
    /// use core::iter::empty;
    ///
    /// assert_eq!(Natural::from_bits_desc(empty()), 0);
    /// // 105 = 1101001b
    /// assert_eq!(
    ///     Natural::from_bits_desc([true, true, false, true, false, false, true].iter().cloned()),
    ///     105
    /// );
    /// ```
    fn from_bits_desc<I: Iterator<Item = bool>>(xs: I) -> Natural {
        let mut out = Vec::new();
        let mut last_width = 0;
        for chunk in &xs.chunks(usize::exact_from(Limb::WIDTH)) {
            let mut x = 0;
            let mut i = 0;
            for bit in chunk {
                x <<= 1;
                if bit {
                    x |= 1;
                }
                i += 1;
            }
            last_width = i;
            out.push(x);
        }
        match out.len() {
            0 => Natural::ZERO,
            1 => Natural::from(out[0]),
            _ => {
                out.reverse();
                if last_width != Limb::WIDTH {
                    let out_0 = out[0];
                    out[0] = 0;
                    limbs_slice_shr_in_place(&mut out, Limb::WIDTH - last_width);
                    out[0] |= out_0;
                }
                Natural::from_owned_limbs_asc(out)
            }
        }
    }
}