1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 1991, 1993-1995, 1997, 1999, 2000, 2001, 2002, 2012 Free Software Foundation,
//      Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::Limb;
use alloc::vec::Vec;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::BitAccess;

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, gets a bit of
// the `Natural` at a specified index. Sufficiently high indices will return `false`.
//
// # Worst-case complexity
// Constant time and additional memory.
//
// This is equivalent to `mpz_tstbit` from `mpz/tstbit.c`, GMP 6.2.1, where the input is
// non-negative.
pub_crate_test! {limbs_get_bit(xs: &[Limb], index: u64) -> bool {
    xs.get(usize::exact_from(index >> Limb::LOG_WIDTH))
        .map_or(false, |x| x.get_bit(index & Limb::WIDTH_MASK))
}}

fn limbs_set_bit_helper(xs: &mut [Limb], index: u64, limb_index: usize) {
    xs[limb_index].set_bit(index & Limb::WIDTH_MASK);
}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, sets a bit of
// the `Natural` at a specified index to `true`. Indices that are outside the bounds of the slice
// will cause a panic.
//
// # Worst-case complexity
// Constant time and additional memory.
//
// # Panics
// Panics if `index >= xs.len() * Limb::WIDTH`.
//
// This is equivalent to `mpz_setbit` from `mpz/setbit.c`, GMP 6.2.1, where `d` is non-negative and
// `bit_idx` small enough that no additional memory needs to be given to `d`.
pub_crate_test! {limbs_slice_set_bit(xs: &mut [Limb], index: u64) {
    limbs_set_bit_helper(xs, index, usize::exact_from(index >> Limb::LOG_WIDTH));
}}

// Interpreting a `Vec` of `Limb`s as the limbs (in ascending order) of a `Natural`, sets a bit of
// the `Natural` at a specified index to `true`. Sufficiently high indices will increase the length
// of the limbs vector.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
//
// This is equivalent to `mpz_setbit` from `mpz/setbit.c`, GMP 6.2.1, where `d` is non-negative.
pub_test! {limbs_vec_set_bit(xs: &mut Vec<Limb>, index: u64) {
    let small_index = usize::exact_from(index >> Limb::LOG_WIDTH);
    if small_index >= xs.len() {
        xs.resize(small_index + 1, 0);
    }
    limbs_set_bit_helper(xs, index, small_index);
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, sets a bit of
// the `Natural` at a specified index to `false`. Indices that are outside the bounds of the slice
// will result in no action being taken, since there are infinitely many leading zeros.
//
// # Worst-case complexity
// Constant time and additional memory.
//
// This is equivalent to `mpz_clrbit` from `mpz/clrbit.c`, GMP 6.2.1, where `d` is non-negative.
pub_crate_test! {limbs_clear_bit(xs: &mut [Limb], index: u64) {
    let small_index = usize::exact_from(index >> Limb::LOG_WIDTH);
    if small_index < xs.len() {
        xs[small_index].clear_bit(index & Limb::WIDTH_MASK);
    }
}}

/// Provides functions for accessing and modifying the $i$th bit of a [`Natural`], or the
/// coefficient of $2^i$ in its binary expansion.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::traits::Zero;
/// use malachite_base::num::logic::traits::BitAccess;
/// use malachite_nz::natural::Natural;
///
/// let mut x = Natural::ZERO;
/// x.assign_bit(2, true);
/// x.assign_bit(5, true);
/// x.assign_bit(6, true);
/// assert_eq!(x, 100);
/// x.assign_bit(2, false);
/// x.assign_bit(5, false);
/// x.assign_bit(6, false);
/// assert_eq!(x, 0);
///
/// let mut x = Natural::ZERO;
/// x.flip_bit(10);
/// assert_eq!(x, 1024);
/// x.flip_bit(10);
/// assert_eq!(x, 0);
/// ```
impl BitAccess for Natural {
    /// Determines whether the $i$th bit of a [`Natural`], or the coefficient of $2^i$ in its binary
    /// expansion, is 0 or 1.
    ///
    /// `false` means 0 and `true` means 1. Getting bits beyond the [`Natural`]'s width is allowed;
    /// those bits are `false`.
    ///
    /// Let
    /// $$
    /// n = \sum_{i=0}^\infty 2^{b_i},
    /// $$
    /// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the rest are
    /// 0. Then $f(n, j) = (b_j = 1)$.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::logic::traits::BitAccess;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(123u32).get_bit(2), false);
    /// assert_eq!(Natural::from(123u32).get_bit(3), true);
    /// assert_eq!(Natural::from(123u32).get_bit(100), false);
    /// assert_eq!(Natural::from(10u32).pow(12).get_bit(12), true);
    /// assert_eq!(Natural::from(10u32).pow(12).get_bit(100), false);
    /// ```
    fn get_bit(&self, index: u64) -> bool {
        match *self {
            Natural(Small(small)) => small.get_bit(index),
            Natural(Large(ref limbs)) => limbs_get_bit(limbs, index),
        }
    }

    /// Sets the $i$th bit of a [`Natural`], or the coefficient of $2^i$ in its binary expansion, to
    /// 1.
    ///
    /// Let
    /// $$
    /// n = \sum_{i=0}^\infty 2^{b_i},
    /// $$
    /// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the rest are
    /// 0. Then
    /// $$
    /// n \gets \\begin{cases}
    ///     n + 2^j & \text{if} \\quad b_j = 0, \\\\
    ///     n & \text{otherwise}.
    /// \\end{cases}
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitAccess;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::ZERO;
    /// x.set_bit(2);
    /// x.set_bit(5);
    /// x.set_bit(6);
    /// assert_eq!(x, 100);
    /// ```
    fn set_bit(&mut self, index: u64) {
        match self {
            Natural(Small(ref mut small)) => {
                if index < Limb::WIDTH {
                    let mut modified = *small;
                    modified.set_bit(index);
                    *small = modified;
                } else {
                    let mut limbs = vec![*small];
                    limbs_vec_set_bit(&mut limbs, index);
                    *self = Natural(Large(limbs));
                }
            }
            Natural(Large(ref mut limbs)) => {
                limbs_vec_set_bit(limbs, index);
            }
        }
    }

    /// Sets the $i$th bit of a [`Natural`], or the coefficient of $2^i$ in its binary expansion, to
    /// 0.
    ///
    /// Clearing bits beyond the [`Natural`]'s width is allowed; since those bits are already
    /// `false`, clearing them does nothing.
    ///
    /// Let
    /// $$
    /// n = \sum_{i=0}^\infty 2^{b_i},
    /// $$
    /// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the rest are
    /// 0. Then
    /// $$
    /// n \gets \\begin{cases}
    ///     n - 2^j & \text{if} \\quad b_j = 1, \\\\
    ///     n & \text{otherwise}.
    /// \\end{cases}
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitAccess;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(0x7fu32);
    /// x.clear_bit(0);
    /// x.clear_bit(1);
    /// x.clear_bit(3);
    /// x.clear_bit(4);
    /// assert_eq!(x, 100);
    /// ```
    fn clear_bit(&mut self, index: u64) {
        match self {
            Natural(Small(ref mut small)) => small.clear_bit(index),
            Natural(Large(ref mut limbs)) => {
                limbs_clear_bit(limbs, index);
                self.trim();
            }
        }
    }
}