1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::arithmetic::is_power_of_2::limbs_is_power_of_2;
use crate::natural::logic::significant_bits::limbs_significant_bits;
use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::Limb;
use malachite_base::num::arithmetic::traits::{
    CeilingLogBasePowerOf2, CheckedLogBasePowerOf2, DivMod, FloorLogBasePowerOf2,
};

// Given the limbs of a `Natural`, returns the floor of its base-$2^p$ logarithm.
//
// This function assumes that `xs` is nonempty and the last (most significant) limb is nonzero.
//
// $f((d_i)_ {i=0}^k, p) = \lfloor\log_{2^p} x\rfloor$, where $x = \sum_{i=0}^kB^id_i$ and $B$ is
// one more than `Limb::MAX`.
//
// # Worst-case complexity
// Constant time and additional memory.
//
// # Panics
// Panics if `xs` is empty or `pow` is 0.
pub_test! {limbs_floor_log_base_power_of_2(xs: &[Limb], pow: u64) -> u64 {
    assert_ne!(pow, 0);
    (limbs_significant_bits(xs) - 1) / pow
}}

// Given the limbs of a `Natural`, returns the ceiling of its base-$2^p$ logarithm.
//
// This function assumes that `xs` is nonempty and the last (most significant) limb is nonzero.
//
// $f((d_i)_ {i=0}^k, p) = \lceil\log_{2^p} x\rceil$, where $x = \sum_{i=0}^kB^id_i$ and $B$ is one
// more than `Limb::MAX`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is empty or `pow` is 0.
pub_test! {limbs_ceiling_log_base_power_of_2(xs: &[Limb], pow: u64) -> u64 {
    assert_ne!(pow, 0);
    let significant_bits_m_1 = limbs_significant_bits(xs) - 1;
    let (floor_log, rem) = significant_bits_m_1.div_mod(pow);
    if limbs_is_power_of_2(xs) && rem == 0 {
        floor_log
    } else {
        floor_log + 1
    }
}}

// Given the limbs of a `Natural`, returns the its base-$2^p$ logarithm. If the `Natural` is not a
// power of $2^p$, returns `None`.
//
// This function assumes that `xs` is nonempty and the last (most significant) limb is nonzero.
//
// $$
// f((d_i)_ {i=0}^k, p) = \\begin{cases}
//     \operatorname{Some}(\log_{2^p} x) & \text{if} \\quad \log_{2^p} x \in \Z, \\\\
//     \operatorname{None} & \textrm{otherwise}.
// \\end{cases}
// $$
// where $x = \sum_{i=0}^kB^id_i$ and $B$ is one more than `Limb::MAX`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is empty or `pow` is 0.
pub_test! {limbs_checked_log_base_power_of_2(xs: &[Limb], pow: u64) -> Option<u64> {
    assert_ne!(pow, 0);
    let significant_bits_m_1 = limbs_significant_bits(xs) - 1;
    let (floor_log, rem) = significant_bits_m_1.div_mod(pow);
    if limbs_is_power_of_2(xs) && rem == 0 {
        Some(floor_log)
    } else {
        None
    }
}}

impl<'a> FloorLogBasePowerOf2<u64> for &'a Natural {
    type Output = u64;

    /// Returns the floor of the base-$2^k$ logarithm of a positive [`Natural`].
    ///
    /// $f(x, k) = \lfloor\log_{2^k} x\rfloor$.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Panics
    /// Panics if `self` is 0 or `pow` is 0.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::FloorLogBasePowerOf2;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(100u32).floor_log_base_power_of_2(2), 3);
    /// assert_eq!(Natural::from(4294967296u64).floor_log_base_power_of_2(8), 4);
    /// ```
    fn floor_log_base_power_of_2(self, pow: u64) -> u64 {
        match *self {
            Natural(Small(small)) => small.floor_log_base_power_of_2(pow),
            Natural(Large(ref limbs)) => limbs_floor_log_base_power_of_2(limbs, pow),
        }
    }
}

impl<'a> CeilingLogBasePowerOf2<u64> for &'a Natural {
    type Output = u64;

    /// Returns the ceiling of the base-$2^k$ logarithm of a positive [`Natural`].
    ///
    /// $f(x, k) = \lceil\log_{2^k} x\rceil$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `self` is 0 or `pow` is 0.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::CeilingLogBasePowerOf2;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(100u32).ceiling_log_base_power_of_2(2), 4);
    /// assert_eq!(Natural::from(4294967296u64).ceiling_log_base_power_of_2(8), 4);
    /// ```
    fn ceiling_log_base_power_of_2(self, pow: u64) -> u64 {
        match *self {
            Natural(Small(small)) => small.ceiling_log_base_power_of_2(pow),
            Natural(Large(ref limbs)) => limbs_ceiling_log_base_power_of_2(limbs, pow),
        }
    }
}

impl<'a> CheckedLogBasePowerOf2<u64> for &'a Natural {
    type Output = u64;

    /// Returns the base-$2^k$ logarithm of a positive [`Natural`]. If the [`Natural`] is not a
    /// power of $2^k$, then `None` is returned.
    ///
    /// $$
    /// f(x, k) = \\begin{cases}
    ///     \operatorname{Some}(\log_{2^k} x) & \text{if} \\quad \log_{2^k} x \in \Z, \\\\
    ///     \operatorname{None} & \textrm{otherwise}.
    /// \\end{cases}
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `self` is 0 or `pow` is 0.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::CheckedLogBasePowerOf2;
    /// use malachite_nz::natural::Natural;
    /// use core::str::FromStr;
    ///
    /// assert_eq!(Natural::from(100u32).checked_log_base_power_of_2(2), None);
    /// assert_eq!(Natural::from(4294967296u64).checked_log_base_power_of_2(8), Some(4));
    /// ```
    fn checked_log_base_power_of_2(self, pow: u64) -> Option<u64> {
        match *self {
            Natural(Small(small)) => small.checked_log_base_power_of_2(pow),
            Natural(Large(ref limbs)) => limbs_checked_log_base_power_of_2(limbs, pow),
        }
    }
}