1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      `limb_apprsqrt`, `mpz_2multiswing_1`, `mpz_oddfac_1`, `mpz_fac_ui`, and `mpz_2fac_ui`
//      contributed to the GNU project by Marco Bodrato.
//
//      Copyright © 1991-2018 Free Software Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::arithmetic::mul::product_of_limbs::limbs_product;
use crate::natural::arithmetic::mul::{
    limbs_mul_greater_to_out, limbs_mul_greater_to_out_scratch_len,
};
use crate::natural::arithmetic::square::{limbs_square_to_out, limbs_square_to_out_scratch_len};
use crate::natural::Natural;
use crate::platform::{
    Limb, NTH_ROOT_NUMB_MASK_TABLE, ODD_DOUBLEFACTORIAL_TABLE_LIMIT, ODD_DOUBLEFACTORIAL_TABLE_MAX,
    ODD_FACTORIAL_TABLE_LIMIT, ONE_LIMB_ODD_DOUBLEFACTORIAL_TABLE, ONE_LIMB_ODD_FACTORIAL_TABLE,
    TABLE_2N_MINUS_POPC_2N, TABLE_LIMIT_2N_MINUS_POPC_2N,
};
use alloc::vec::Vec;
use malachite_base::fail_on_untested_path;
use malachite_base::num::arithmetic::traits::{
    DoubleFactorial, Factorial, Gcd, Multifactorial, Parity, Pow, PowerOf2, Square, Subfactorial,
    XMulYToZZ,
};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::{ConvertibleFrom, ExactFrom, WrappingFrom};
#[cfg(feature = "32_bit_limbs")]
use malachite_base::num::factorization::prime_sieve::limbs_prime_sieve_u32;
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_base::num::factorization::prime_sieve::limbs_prime_sieve_u64;
use malachite_base::num::factorization::prime_sieve::{id_to_n, limbs_prime_sieve_size, n_to_bit};
use malachite_base::num::logic::traits::{BitAccess, CountOnes, NotAssign, SignificantBits};

pub_test! {subfactorial_naive(n: u64) -> Natural {
    let mut f = Natural::ONE;
    let mut b = true;
    for i in 1..=n {
        f *= Natural::from(i);
        if b {
            f -= Natural::ONE;
        } else {
            f += Natural::ONE;
        }
        b.not_assign();
    }
    f
}}

// Returns an approximation of the square root of x.
//
// It gives:
// ```
// limb_apprsqrt(x) ^ 2 <= x < (limb_apprsqrt(x) + 1) ^ 2
// ```
// or
// ```
// x <= limb_apprsqrt(x) ^ 2 <= x * 9 / 8
// ```
//
// This is equivalent to `limb_apprsqrt` in `mpz/oddfac_1.c`, GMP 6.2.1.
fn limbs_approx_sqrt(x: u64) -> u64 {
    assert!(x > 2);
    let s = x.significant_bits() >> 1;
    (u64::power_of_2(s) + (x >> s)) >> 1
}

pub(crate) const fn bit_to_n(bit: u64) -> u64 {
    (bit * 3 + 4) | 1
}

// `limbs_2_multiswing_odd` computes the odd part of the 2-multiswing factorial of the parameter n.
// The result x is an odd positive integer so that multiswing(n, 2) = x * 2 ^ a.
//
// The algorithm is described by Peter Luschny in "Divide, Swing and Conquer the Factorial!".
//
// The pointer sieve points to `limbs_prime_sieve_size(n)` limbs containing a bit array where primes
// are marked as 0. Enough limbs must be pointed by `factors`.
//
// # Worst-case complexity
// $T(n) = O(n (\log n)^2 \log\log n)$
//
// $M(n) = O(n \log n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `n`.
//
// This is equivalent to `mpz_2multiswing_1` from `mpz/oddfac_1.c`, GMP 6.2.1, where `x_and_sieve`
// is provided as a single slice, allowing the sieve to be overwritten.
#[allow(clippy::useless_conversion)]
fn limbs_2_multiswing_odd(
    x_and_sieve: &mut [Limb],
    x_len: usize,
    mut n: Limb,
    factors: &mut [Limb],
) -> usize {
    assert!(n > 25);
    let mut prod = if n.odd() { n } else { 1 };
    n.clear_bit(0);
    let max_prod = Limb::MAX / (n - 1);
    // Handle prime = 3 separately
    let mut j = 0;
    if prod > max_prod {
        // not triggered by the first billion inputs
        fail_on_untested_path("limbs_2_multiswing_odd, prod > max_prod for prime == 3");
        factors[j] = prod;
        j += 1;
        prod = 1;
    }
    let mut q = n;
    while q >= 3 {
        q /= 3;
        if q.odd() {
            prod *= 3;
        }
    }
    let limb_n = n;
    let n = u64::exact_from(n);
    // Swing primes from 5 to n / 3
    let mut s = limbs_approx_sqrt(n);
    assert!(s >= 5);
    s = n_to_bit(s);
    assert!(bit_to_n(s + 1).square() > n);
    assert!(s < n_to_bit(n / 3));
    let start = n_to_bit(5);
    let mut index = usize::exact_from(start >> Limb::LOG_WIDTH);
    let mut mask = Limb::power_of_2(start & Limb::WIDTH_MASK);
    let sieve = &mut x_and_sieve[x_len..];
    for i in start + 1..=s + 1 {
        if sieve[index] & mask == 0 {
            let prime = Limb::exact_from(id_to_n(i));
            if prod > max_prod {
                factors[j] = prod;
                j += 1;
                prod = 1;
            }
            let mut q = limb_n;
            while q >= prime {
                q /= prime;
                if q.odd() {
                    prod *= prime;
                }
            }
        }
        mask <<= 1;
        if mask == 0 {
            mask = 1;
            index += 1;
        }
    }
    assert!(max_prod <= Limb::MAX / 3);
    let l_max_prod = max_prod * 3;
    for i in s + 2..=n_to_bit(n / 3) + 1 {
        if sieve[index] & mask == 0 {
            let prime = Limb::exact_from(id_to_n(i));
            if (limb_n / prime).odd() {
                if prod > l_max_prod {
                    factors[j] = prod;
                    j += 1;
                    prod = prime;
                } else {
                    prod *= prime;
                }
            }
        }
        mask <<= 1;
        if mask == 0 {
            mask = 1;
            index += 1;
        }
    }
    // Store primes from (n + 1) / 2 to n
    let start = n_to_bit(n >> 1) + 1;
    let mut index = usize::exact_from(start >> Limb::LOG_WIDTH);
    let mut mask = Limb::power_of_2(start & Limb::WIDTH_MASK);
    for i in start + 1..=n_to_bit(n) + 1 {
        if sieve[index] & mask == 0 {
            let prime = Limb::exact_from(id_to_n(i));
            if prod > max_prod {
                factors[j] = prod;
                j += 1;
                prod = prime;
            } else {
                prod *= prime;
            }
        }
        mask <<= 1;
        if mask == 0 {
            mask = 1;
            index += 1;
        }
    }
    if j != 0 {
        factors[j] = prod;
        j += 1;
        limbs_product(x_and_sieve, &mut factors[..j])
    } else {
        // not triggered by the first billion inputs
        fail_on_untested_path("limbs_2_multiswing_odd, j == 0");
        x_and_sieve[0] = prod;
        1
    }
}

pub(crate) const FAC_DSC_THRESHOLD: usize = 236;

const FACTORS_PER_LIMB: usize =
    (Limb::WIDTH / ((usize::WIDTH - (FAC_DSC_THRESHOLD - 1).leading_zeros() as u64) + 1)) as usize;

// n ^ log <= Limb::MAX: a limb can store log factors less than n.
//
// This is equivalent to log_n_max, `gmp-impl.h`, GMP 6.2.1.
pub(crate) fn log_n_max(n: Limb) -> u64 {
    // NTH_ROOT_NUMB_MASK_TABLE[0] is Limb::MAX, so a match will always be found
    u64::wrapping_from(
        NTH_ROOT_NUMB_MASK_TABLE
            .iter()
            .rposition(|&x| n <= x)
            .unwrap(),
    ) + 1
}

// `limbs_odd_factorial` computes the odd part of the factorial of the parameter n, i.e. n! = x * 2
// ^ a, where x is the returned value: an odd positive integer.
//
// If `double` is `true`, a square is skipped in the DSC part, e.g. if n is odd, n >
// FAC_DSC_THRESHOLD and `double` is true, x is set to n!!.
//
// If n is too small, `double` is ignored, and an assert can be triggered.
//
// TODO: FAC_DSC_THRESHOLD is used here with two different roles:
// - to decide when prime factorisation is needed,
// - to stop the recursion, once sieving is done.
// Maybe two thresholds can do a better job.
//
// # Worst-case complexity
// $T(n) = O(n (\log n)^2 \log\log n)$
//
// $M(n) = O(n \log n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `n`.
//
// This is equivalent to `mpz_oddfac_1` from `mpz/oddfac_1.c`, GMP 6.2.1.
pub_crate_test! {
#[allow(clippy::redundant_comparisons)]
limbs_odd_factorial(n: usize, double: bool) -> Vec<Limb> {
    assert!(Limb::convertible_from(n));
    if double {
        assert!(n > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1 && n >= FAC_DSC_THRESHOLD);
    }
    if n <= ODD_FACTORIAL_TABLE_LIMIT {
        vec![ONE_LIMB_ODD_FACTORIAL_TABLE[n]]
    } else if n <= ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1 {
        let (hi, lo) = Limb::x_mul_y_to_zz(
            ONE_LIMB_ODD_DOUBLEFACTORIAL_TABLE[(n - 1) >> 1],
            ONE_LIMB_ODD_FACTORIAL_TABLE[n >> 1],
        );
        vec![lo, hi]
    } else {
        // Compute the number of recursive steps for the DSC algorithm
        let mut m = n;
        let mut s = 0;
        while m >= FAC_DSC_THRESHOLD {
            m >>= 1;
            s += 1;
        }
        let mut factors = vec![0; m / FACTORS_PER_LIMB + 1];
        assert!(m >= FACTORS_PER_LIMB);
        assert!(m > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1);
        let mut j = 0;
        let mut prod = 1;
        let mut max_prod = Limb::MAX / Limb::wrapping_from(FAC_DSC_THRESHOLD);
        while m > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1 {
            let mut i = ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2;
            factors[j] = ODD_DOUBLEFACTORIAL_TABLE_MAX;
            j += 1;
            while i <= m {
                if prod > max_prod {
                    factors[j] = prod;
                    j += 1;
                    prod = Limb::wrapping_from(i);
                } else {
                    prod *= Limb::wrapping_from(i);
                }
                i += 2;
            }
            max_prod <<= 1;
            m >>= 1;
        }
        factors[j] = prod;
        j += 1;
        factors[j] = ONE_LIMB_ODD_DOUBLEFACTORIAL_TABLE[(m - 1) >> 1];
        j += 1;
        factors[j] = ONE_LIMB_ODD_FACTORIAL_TABLE[m >> 1];
        j += 1;
        let mut out = vec![0; j];
        let size = limbs_product(&mut out, &mut factors[..j]);
        out.truncate(size);
        if s != 0 {
            // Use the algorithm described by Peter Luschny in "Divide, Swing and Conquer the
            // Factorial!".
            let mut size = (n >> Limb::LOG_WIDTH) + 4;
            let n_m_1 = u64::exact_from(n - 1);
            assert!(limbs_prime_sieve_size::<Limb>(n_m_1) < size - (size >> 1));
            // 2-multiswing(n) < 2^(n - 1) * sqrt(n / pi) < 2 ^ (n + Limb::WIDTH); One more can be
            // overwritten by mul, another for the sieve.
            let mut swing_and_sieve = vec![0; size];
            // Put the sieve on the second half; it will be overwritten by the last
            // `limbs_2_multiswing_odd`.
            let sieve_offset = (size >> 1) + 1;
            #[cfg(feature = "32_bit_limbs")]
            let count = limbs_prime_sieve_u32(&mut swing_and_sieve[sieve_offset..], n_m_1);
            #[cfg(not(feature = "32_bit_limbs"))]
            let count = limbs_prime_sieve_u64(&mut swing_and_sieve[sieve_offset..], n_m_1);
            size = usize::exact_from(
                (count + 1)
                    / log_n_max(Limb::exact_from(n))
                    + 1,
            );
            let mut factors = vec![0; size];
            let mut out_len = out.len();
            for i in (0..s).rev() {
                let ns = limbs_2_multiswing_odd(
                    &mut swing_and_sieve,
                    sieve_offset,
                    Limb::exact_from(n >> i),
                    &mut factors,
                );
                let mut square;
                if double && i == 0 {
                    size = out_len;
                    square = vec![0; size];
                    square[..out_len].copy_from_slice(&out[..out_len]);
                } else {
                    size = out_len << 1;
                    square = vec![0; size];
                    let mut square_scratch = vec![0; limbs_square_to_out_scratch_len(out_len)];
                    limbs_square_to_out(&mut square, &out[..out_len], &mut square_scratch);
                    if square[size - 1] == 0 {
                        size -= 1;
                    }
                }
                out_len = size + ns;
                out.resize(out_len, 0);
                assert!(ns <= size);
                // n != n$ * floor(n / 2)! ^ 2
                let mut mul_scratch = vec![0; limbs_mul_greater_to_out_scratch_len(size, ns)];
                if limbs_mul_greater_to_out(
                    &mut out,
                    &square[..size],
                    &swing_and_sieve[..ns],
                    &mut mul_scratch,
                ) == 0
                {
                    out_len -= 1;
                }
            }
        }
        if *out.last().unwrap() == 0 {
            out.pop();
        }
        out
    }
}}

const FAC_ODD_THRESHOLD: Limb = 24;

#[cfg(feature = "32_bit_limbs")]
const SMALL_FACTORIAL_LIMIT: u64 = 13;
#[cfg(not(feature = "32_bit_limbs"))]
const SMALL_FACTORIAL_LIMIT: u64 = 21;

impl Factorial for Natural {
    /// Computes the factorial of a number.
    ///
    /// $$
    /// f(n) = n! = 1 \times 2 \times 3 \times \cdots \times n.
    /// $$
    ///
    /// $n! = O(\sqrt{n}(n/e)^n)$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `n`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Factorial;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::factorial(0), 1);
    /// assert_eq!(Natural::factorial(1), 1);
    /// assert_eq!(Natural::factorial(2), 2);
    /// assert_eq!(Natural::factorial(3), 6);
    /// assert_eq!(Natural::factorial(4), 24);
    /// assert_eq!(Natural::factorial(5), 120);
    /// assert_eq!(
    ///     Natural::factorial(100).to_string(),
    ///     "9332621544394415268169923885626670049071596826438162146859296389521759999322991560894\
    ///     1463976156518286253697920827223758251185210916864000000000000000000000000"
    /// );
    /// ```
    ///
    /// This is equivalent to `mpz_fac_ui` from `mpz/fac_ui.c`, GMP 6.2.1.
    #[allow(clippy::useless_conversion)]
    fn factorial(n: u64) -> Natural {
        assert!(Limb::convertible_from(n));
        if n < SMALL_FACTORIAL_LIMIT {
            Natural::from(Limb::factorial(n))
        } else if n < u64::from(FAC_ODD_THRESHOLD) {
            let mut factors =
                vec![0; usize::wrapping_from(n - SMALL_FACTORIAL_LIMIT) / FACTORS_PER_LIMB + 2];
            factors[0] = Limb::factorial(SMALL_FACTORIAL_LIMIT - 1);
            let mut j = 1;
            let n = Limb::wrapping_from(n);
            let mut prod = n;
            const MAX_PROD: Limb = Limb::MAX / (FAC_ODD_THRESHOLD | 1);
            const LIMB_SMALL_FACTORIAL_LIMIT: Limb = SMALL_FACTORIAL_LIMIT as Limb;
            for i in (LIMB_SMALL_FACTORIAL_LIMIT..n).rev() {
                if prod > MAX_PROD {
                    factors[j] = prod;
                    j += 1;
                    prod = i;
                } else {
                    prod *= i;
                }
            }
            factors[j] = prod;
            j += 1;
            let mut xs = vec![0; j];
            let size = limbs_product(&mut xs, &mut factors[..j]);
            xs.truncate(size);
            Natural::from_owned_limbs_asc(xs)
        } else {
            let count = if n <= TABLE_LIMIT_2N_MINUS_POPC_2N {
                u64::from(TABLE_2N_MINUS_POPC_2N[usize::exact_from((n >> 1) - 1)])
            } else {
                n - CountOnes::count_ones(n)
            };
            Natural::from_owned_limbs_asc(limbs_odd_factorial(usize::exact_from(n), false)) << count
        }
    }
}

const FAC_2DSC_THRESHOLD: Limb = ((FAC_DSC_THRESHOLD << 1) | (FAC_DSC_THRESHOLD & 1)) as Limb;

impl DoubleFactorial for Natural {
    /// Computes the double factorial of a number.
    ///
    /// $$
    /// f(n) = n!! = n \times (n - 2) \times (n - 4) \times \cdots \times i,
    /// $$
    /// where $i$ is 1 if $n$ is odd and $2$ if $n$ is even.
    ///
    /// $n!! = O(\sqrt{n}(n/e)^{n/2})$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DoubleFactorial;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::double_factorial(0), 1);
    /// assert_eq!(Natural::double_factorial(1), 1);
    /// assert_eq!(Natural::double_factorial(2), 2);
    /// assert_eq!(Natural::double_factorial(3), 3);
    /// assert_eq!(Natural::double_factorial(4), 8);
    /// assert_eq!(Natural::double_factorial(5), 15);
    /// assert_eq!(Natural::double_factorial(6), 48);
    /// assert_eq!(Natural::double_factorial(7), 105);
    /// assert_eq!(
    ///     Natural::double_factorial(99).to_string(),
    ///     "2725392139750729502980713245400918633290796330545803413734328823443106201171875"
    /// );
    /// assert_eq!(
    ///     Natural::double_factorial(100).to_string(),
    ///     "34243224702511976248246432895208185975118675053719198827915654463488000000000000"
    /// );
    /// ```
    ///
    /// This is equivalent to `mpz_2fac_ui` from `mpz/2fac_ui.c`, GMP 6.2.1.
    fn double_factorial(n: u64) -> Natural {
        assert!(Limb::convertible_from(n));
        if n.even() {
            // n is even, n = 2k, (2k)!! = k! 2^k
            let half_n = usize::wrapping_from(n >> 1);
            let count = if n <= TABLE_LIMIT_2N_MINUS_POPC_2N && n != 0 {
                u64::from(TABLE_2N_MINUS_POPC_2N[half_n - 1])
            } else {
                n - CountOnes::count_ones(n)
            };
            Natural::from_owned_limbs_asc(limbs_odd_factorial(half_n, false)) << count
        } else if n <= u64::wrapping_from(ODD_DOUBLEFACTORIAL_TABLE_LIMIT) {
            Natural::from(ONE_LIMB_ODD_DOUBLEFACTORIAL_TABLE[usize::wrapping_from(n >> 1)])
        } else if n < u64::wrapping_from(FAC_2DSC_THRESHOLD) {
            let mut factors = vec![0; usize::exact_from(n) / (FACTORS_PER_LIMB << 1) + 1];
            factors[0] = ODD_DOUBLEFACTORIAL_TABLE_MAX;
            let mut j = 1;
            let mut n = Limb::wrapping_from(n);
            let mut prod = n;
            let max_prod = Limb::MAX / FAC_2DSC_THRESHOLD;
            const LIMIT: Limb = ODD_DOUBLEFACTORIAL_TABLE_LIMIT as Limb + 2;
            while n > LIMIT {
                n -= 2;
                if prod > max_prod {
                    factors[j] = prod;
                    j += 1;
                    prod = n;
                } else {
                    prod *= n;
                }
            }
            factors[j] = prod;
            j += 1;
            let mut xs = vec![0; j];
            let size = limbs_product(&mut xs, &mut factors[..j]);
            xs.truncate(size);
            Natural::from_owned_limbs_asc(xs)
        } else {
            Natural::from_owned_limbs_asc(limbs_odd_factorial(usize::exact_from(n), true))
        }
    }
}

impl Multifactorial for Natural {
    /// Computes a multifactorial of a number.
    ///
    /// $$
    /// f(n, m) = n!^{(m)} = n \times (n - m) \times (n - 2m) \times \cdots \times i.
    /// $$
    /// If $n$ is divisible by $m$, then $i$ is $m$; otherwise, $i$ is the remainder when $n$ is
    /// divided by $m$.
    ///
    /// $n!^{(m)} = O(\sqrt{n}(n/e)^{n/m})$.
    ///
    /// # Worst-case complexity
    /// $T(n, m) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n, m) = O(n \log n)$
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Multifactorial;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::multifactorial(0, 1), 1);
    /// assert_eq!(Natural::multifactorial(1, 1), 1);
    /// assert_eq!(Natural::multifactorial(2, 1), 2);
    /// assert_eq!(Natural::multifactorial(3, 1), 6);
    /// assert_eq!(Natural::multifactorial(4, 1), 24);
    /// assert_eq!(Natural::multifactorial(5, 1), 120);
    ///
    /// assert_eq!(Natural::multifactorial(0, 2), 1);
    /// assert_eq!(Natural::multifactorial(1, 2), 1);
    /// assert_eq!(Natural::multifactorial(2, 2), 2);
    /// assert_eq!(Natural::multifactorial(3, 2), 3);
    /// assert_eq!(Natural::multifactorial(4, 2), 8);
    /// assert_eq!(Natural::multifactorial(5, 2), 15);
    /// assert_eq!(Natural::multifactorial(6, 2), 48);
    /// assert_eq!(Natural::multifactorial(7, 2), 105);
    ///
    /// assert_eq!(Natural::multifactorial(0, 3), 1);
    /// assert_eq!(Natural::multifactorial(1, 3), 1);
    /// assert_eq!(Natural::multifactorial(2, 3), 2);
    /// assert_eq!(Natural::multifactorial(3, 3), 3);
    /// assert_eq!(Natural::multifactorial(4, 3), 4);
    /// assert_eq!(Natural::multifactorial(5, 3), 10);
    /// assert_eq!(Natural::multifactorial(6, 3), 18);
    /// assert_eq!(Natural::multifactorial(7, 3), 28);
    /// assert_eq!(Natural::multifactorial(8, 3), 80);
    /// assert_eq!(Natural::multifactorial(9, 3), 162);
    ///
    /// assert_eq!(
    ///     Natural::multifactorial(100, 3).to_string(),
    ///     "174548867015437739741494347897360069928419328000000000"
    /// );
    /// ```
    fn multifactorial(mut n: u64, mut m: u64) -> Natural {
        assert_ne!(m, 0);
        assert!(Limb::convertible_from(n));
        assert!(Limb::convertible_from(m));
        if n < 3 || n - 3 < m - 1 {
            // n < 3 || n - 1 <= m
            if n == 0 {
                Natural::ONE
            } else {
                Natural::from(n)
            }
        } else {
            // 0 < m < n - 1 < Limb::MAX
            let gcd = n.gcd(m);
            if gcd > 1 {
                n /= gcd;
                m /= gcd;
            }
            if m <= 2 {
                // fac or 2fac
                if m == 1 {
                    match gcd {
                        gcd if gcd > 2 => Natural::from(gcd).pow(n) * Natural::factorial(n),
                        2 => Natural::double_factorial(n << 1),
                        _ => Natural::factorial(n),
                    }
                } else if gcd > 1 {
                    // m == 2
                    Natural::from(gcd).pow((n >> 1) + 1) * Natural::double_factorial(n)
                } else {
                    Natural::double_factorial(n)
                }
            } else {
                // m >= 3, gcd(n,m) = 1
                let reduced_n = n / m + 1;
                let mut n = Limb::exact_from(n);
                let m = Limb::exact_from(m);
                let mut j = 0;
                let mut prod = n;
                n -= m;
                let max_prod = Limb::MAX / n;
                let mut factors = vec![0; usize::exact_from(reduced_n / log_n_max(n) + 2)];
                while n > m {
                    if prod > max_prod {
                        factors[j] = prod;
                        j += 1;
                        prod = n;
                    } else {
                        prod *= n;
                    }
                    n -= m;
                }
                factors[j] = n;
                j += 1;
                factors[j] = prod;
                j += 1;
                let mut xs = vec![0; j];
                let size = limbs_product(&mut xs, &mut factors[..j]);
                xs.truncate(size);
                let x = Natural::from_owned_limbs_asc(xs);
                if gcd == 1 {
                    x
                } else {
                    Natural::from(gcd).pow(reduced_n) * x
                }
            }
        }
    }
}

impl Subfactorial for Natural {
    /// Computes the subfactorial of a number.
    ///
    /// The subfactorial of $n$ counts the number of derangements of a set of size $n$; a
    /// derangement is a permutation with no fixed points.
    ///
    /// $$
    /// f(n) = \\ !n = \lfloor n!/e \rfloor.
    /// $$
    ///
    /// $!n = O(n!) = O(\sqrt{n}(n/e)^n)$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n^2)$
    ///
    /// $M(n) = O(n)$
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Subfactorial;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::subfactorial(0), 1);
    /// assert_eq!(Natural::subfactorial(1), 0);
    /// assert_eq!(Natural::subfactorial(2), 1);
    /// assert_eq!(Natural::subfactorial(3), 2);
    /// assert_eq!(Natural::subfactorial(4), 9);
    /// assert_eq!(Natural::subfactorial(5), 44);
    /// assert_eq!(
    ///     Natural::subfactorial(100).to_string(),
    ///     "3433279598416380476519597752677614203236578380537578498354340028268518079332763243279\
    ///     1396429850988990237345920155783984828001486412574060553756854137069878601"
    /// );
    /// ```
    #[inline]
    fn subfactorial(n: u64) -> Natural {
        subfactorial_naive(n)
    }
}