1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 2000–2002, 2005, 2009, 2014, 2017, 2018 Free Software Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::arithmetic::div_exact::{
    limbs_modular_div_mod_barrett, limbs_modular_div_mod_barrett_scratch_len,
    limbs_modular_div_mod_divide_and_conquer, limbs_modular_div_mod_schoolbook,
    limbs_modular_invert_limb,
};
use crate::natural::arithmetic::eq_mod::limbs_mod_exact_odd_limb;
use crate::natural::arithmetic::mod_op::limbs_mod_limb;
use crate::natural::arithmetic::shr::{limbs_shr_to_out, limbs_slice_shr_in_place};
use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::{
    Limb, BMOD_1_TO_MOD_1_THRESHOLD, DC_BDIV_QR_THRESHOLD, MU_BDIV_QR_THRESHOLD,
};
use alloc::vec::Vec;
use malachite_base::num::arithmetic::traits::{DivisibleBy, DivisibleByPowerOf2, Parity};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::TrailingZeros;
use malachite_base::slices::{slice_leading_zeros, slice_test_zero};

// Interpreting a slice of `Limb`s as the limbs of a `Natural` in ascending order, determines
// whether that `Natural` is divisible by a given limb.
//
// This function assumes that `ns` has at least two elements and that `d` is nonzero.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ns.len()`.
//
// This is equivalent to `mpz_divisible_ui_p` from `mpz/divis_ui.c`, GMP 6.2.1, where `a` is
// non-negative and the `ABOVE_THRESHOLD` branch is excluded.
pub_crate_test! {limbs_divisible_by_limb(ns: &[Limb], d: Limb) -> bool {
    assert!(ns.len() > 1);
    if d.even() {
        let twos = TrailingZeros::trailing_zeros(d);
        ns[0].divisible_by_power_of_2(twos) && limbs_mod_exact_odd_limb(ns, d >> twos, 0) == 0
    } else {
        limbs_mod_exact_odd_limb(ns, d, 0) == 0
    }
}}

fn limbs_mod_limb_helper(ns: &[Limb], d_low: Limb) -> Limb {
    if ns.len() < BMOD_1_TO_MOD_1_THRESHOLD {
        limbs_mod_exact_odd_limb(ns, d_low, 0)
    } else {
        limbs_mod_limb(ns, d_low)
    }
}

// Interpreting two slices of `Limb`s, `ns` and `ds`, as the limbs (in ascending order) of two
// `Natural`s, determines whether the first `Natural` is divisible by the second. Both `Natural`s
// are taken by value.
//
// `ns` must be at least as long as `ds`, both slices must be nonempty, and the last limb of both
// must be nonzero.
//
// # Worst-case complexity
// $T(n) = O(n \log n \log \log n)$
//
// $M(n) = O(n \log n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ns.len()`.
//
// # Panics
// Panics if `ns` is shorter than `ds`, `ds` is empty, or the last limbs of either slice are zero.
//
// This is equivalent to `mpn_divisible_p` from `mpn/generic/divis.c`, GMP 6.2.1, where `an >= dn`
// and neither are zero.
pub_crate_test! {
#[allow(clippy::absurd_extreme_comparisons)]
limbs_divisible_by(ns: &mut [Limb], ds: &mut [Limb]) -> bool {
    let n_len = ns.len();
    let d_len = ds.len();
    assert_ne!(d_len, 0);
    assert!(n_len >= d_len);
    assert_ne!(*ns.last().unwrap(), 0);
    assert_ne!(*ds.last().unwrap(), 0);
    // Strip low zero limbs from ds, requiring n == 0 on those.
    let offset = slice_leading_zeros(ds);
    let (ns_lo, ns) = ns.split_at_mut(offset);
    if !slice_test_zero(ns_lo) {
        // n has fewer low zero limbs than d, so not divisible
        return false;
    }
    let n_len = ns.len();
    let ds = &mut ds[offset..];
    let d_len = ds.len();
    let n_0 = ns[0];
    let d_0 = ds[0];
    // n must have at least as many low zero bits as d
    let d_mask = (d_0 & d_0.wrapping_neg()).wrapping_sub(1);
    if n_0 & d_mask != 0 {
        return false;
    }
    if d_len == 1 {
        return if n_len >= BMOD_1_TO_MOD_1_THRESHOLD {
            limbs_mod_limb(ns, d_0) == 0
        } else {
            limbs_mod_exact_odd_limb(ns, d_0 >> d_0.trailing_zeros(), 0) == 0
        };
    }
    let trailing_zeros = TrailingZeros::trailing_zeros(d_0);
    if d_len == 2 {
        let d_1 = ds[1];
        if d_1 <= d_mask {
            let d_low = (d_0 >> trailing_zeros) | (d_1 << (Limb::WIDTH - trailing_zeros));
            return limbs_mod_limb_helper(ns, d_low) == 0;
        }
    }
    let n_len_plus_1 = n_len + 1;
    let mut qs = vec![0; n_len_plus_1 - d_len];
    if trailing_zeros != 0 {
        assert_eq!(limbs_slice_shr_in_place(ds, trailing_zeros), 0);
        assert_eq!(limbs_slice_shr_in_place(ns, trailing_zeros), 0);
    }
    let mut rs_vec;
    let rs = if ns[n_len - 1] >= ds[d_len - 1] {
        rs_vec = Vec::with_capacity(n_len_plus_1);
        rs_vec.extend_from_slice(ns);
        rs_vec.push(0);
        &mut rs_vec
    } else if n_len == d_len {
        return false;
    } else {
        ns
    };
    let r_len = rs.len();
    let q_len = r_len - d_len;
    let rs = if d_len < DC_BDIV_QR_THRESHOLD || q_len < DC_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_schoolbook(&mut qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else if d_len < MU_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_divide_and_conquer(&mut qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else {
        let mut scratch = vec![0; limbs_modular_div_mod_barrett_scratch_len(r_len, d_len)];
        let ns = rs.to_vec();
        limbs_modular_div_mod_barrett(&mut qs, rs, &ns, ds, &mut scratch);
        &mut rs[..d_len]
    };
    slice_test_zero(rs)
}}

// Interpreting two slices of `Limb`s, `ns` and `ds`, as the limbs (in ascending order) of two
// `Natural`s, determines whether the first `Natural` is divisible by the second. The first
// `Natural` is taken by value, and the second by reference.
//
// `ns` must be at least as long as `ds`, both slices must be nonempty, and the last limb of both
// must be nonzero.
//
// # Worst-case complexity
// $T(n) = O(n \log n \log \log n)$
//
// $M(n) = O(n \log n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ns.len()`.
//
// # Panics
// Panics if `ns` is shorter than `ds`, `ds` is empty, or the last limbs of either slice are zero.
//
// This is equivalent to `mpn_divisible_p` from `mpn/generic/divis.c`, GMP 6.2.1, where `an >= dn`
// and neither are zero.
pub_crate_test! {
#[allow(clippy::absurd_extreme_comparisons)]
limbs_divisible_by_val_ref(ns: &mut [Limb], ds: &[Limb]) -> bool {
    let n_len = ns.len();
    let d_len = ds.len();
    assert_ne!(d_len, 0);
    assert!(n_len >= d_len);
    assert_ne!(*ns.last().unwrap(), 0);
    assert_ne!(*ds.last().unwrap(), 0);
    // Strip low zero limbs from ds, requiring n == 0 on those.
    let offset = slice_leading_zeros(ds);
    let (ns_lo, ns) = ns.split_at_mut(offset);
    if !slice_test_zero(ns_lo) {
        // n has fewer low zero limbs than d, so not divisible
        return false;
    }
    let n_len = ns.len();
    let mut scratch;
    let mut ds = &ds[offset..];
    let d_len = ds.len();
    let n_0 = ns[0];
    let d_0 = ds[0];
    // n must have at least as many low zero bits as d
    let d_mask = (d_0 & d_0.wrapping_neg()).wrapping_sub(1);
    if n_0 & d_mask != 0 {
        return false;
    }
    if d_len == 1 {
        return if n_len >= BMOD_1_TO_MOD_1_THRESHOLD {
            limbs_mod_limb(ns, d_0) == 0
        } else {
            limbs_mod_exact_odd_limb(ns, d_0 >> d_0.trailing_zeros(), 0) == 0
        };
    }
    let trailing_zeros = TrailingZeros::trailing_zeros(d_0);
    if d_len == 2 {
        let d_1 = ds[1];
        if d_1 <= d_mask {
            let d_low = (d_0 >> trailing_zeros) | (d_1 << (Limb::WIDTH - trailing_zeros));
            return limbs_mod_limb_helper(ns, d_low) == 0;
        }
    }
    let n_len_plus_1 = n_len + 1;
    let mut qs = vec![0; n_len_plus_1 - d_len];
    if trailing_zeros != 0 {
        scratch = vec![0; d_len];
        assert_eq!(limbs_shr_to_out(&mut scratch, ds, trailing_zeros), 0);
        ds = &scratch;
        assert_eq!(limbs_slice_shr_in_place(ns, trailing_zeros), 0);
    }
    let mut rs_vec;
    let rs = if ns[n_len - 1] >= ds[d_len - 1] {
        rs_vec = Vec::with_capacity(n_len_plus_1);
        rs_vec.extend_from_slice(ns);
        rs_vec.push(0);
        &mut rs_vec
    } else if n_len == d_len {
        return false;
    } else {
        ns
    };
    let r_len = rs.len();
    let q_len = r_len - d_len;
    let rs = if d_len < DC_BDIV_QR_THRESHOLD || q_len < DC_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_schoolbook(&mut qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else if d_len < MU_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_divide_and_conquer(&mut qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else {
        let mut scratch = vec![0; limbs_modular_div_mod_barrett_scratch_len(r_len, d_len)];
        let ns = rs.to_vec();
        limbs_modular_div_mod_barrett(&mut qs, rs, &ns, ds, &mut scratch);
        &mut rs[..d_len]
    };
    slice_test_zero(rs)
}}

// Interpreting two slices of `Limb`s, `ns` and `ds`, as the limbs (in ascending order) of two
// `Natural`s, determines whether the first `Natural` is divisible by the second. The first
// `Natural` is taken by reference, and the second by value.
//
// `ns` must be at least as long as `ds`, both slices must be nonempty, and the last limb of both
// must be nonzero.
//
// # Worst-case complexity
// $T(n) = O(n \log n \log \log n)$
//
// $M(n) = O(n \log n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ns.len()`.
//
// # Panics
// Panics if `ns` is shorter than `ds`, `ds` is empty, or the last limbs of either slice are zero.
//
// This is equivalent to `mpn_divisible_p` from `mpn/generic/divis.c`, GMP 6.2.1, where `an >= dn`
// and neither are zero.
pub_test! {
#[allow(clippy::absurd_extreme_comparisons)]
limbs_divisible_by_ref_val(ns: &[Limb], ds: &mut [Limb]) -> bool {
    let n_len = ns.len();
    let d_len = ds.len();
    assert_ne!(d_len, 0);
    assert!(n_len >= d_len);
    assert_ne!(*ns.last().unwrap(), 0);
    assert_ne!(*ds.last().unwrap(), 0);
    // Strip low zero limbs from ds, requiring n == 0 on those.
    let offset = slice_leading_zeros(ds);
    let (ns_lo, ns) = ns.split_at(offset);
    if !slice_test_zero(ns_lo) {
        // n has fewer low zero limbs than d, so not divisible
        return false;
    }
    let n_len = ns.len();
    let ds = &mut ds[offset..];
    let d_len = ds.len();
    let n_0 = ns[0];
    let d_0 = ds[0];
    // n must have at least as many low zero bits as d
    let d_mask = (d_0 & d_0.wrapping_neg()).wrapping_sub(1);
    if n_0 & d_mask != 0 {
        return false;
    }
    if d_len == 1 {
        return if n_len >= BMOD_1_TO_MOD_1_THRESHOLD {
            limbs_mod_limb(ns, d_0) == 0
        } else {
            limbs_mod_exact_odd_limb(ns, d_0 >> d_0.trailing_zeros(), 0) == 0
        };
    }
    let trailing_zeros = TrailingZeros::trailing_zeros(d_0);
    if d_len == 2 {
        let d_1 = ds[1];
        if d_1 <= d_mask {
            let d_low = (d_0 >> trailing_zeros) | (d_1 << (Limb::WIDTH - trailing_zeros));
            return limbs_mod_limb_helper(ns, d_low) == 0;
        }
    }
    let n_len_plus_1 = n_len + 1;
    let mut rs_qs = vec![0; (n_len_plus_1 << 1) - d_len];
    let (rs, qs) = rs_qs.split_at_mut(n_len_plus_1);
    if trailing_zeros != 0 {
        assert_eq!(limbs_slice_shr_in_place(ds, trailing_zeros), 0);
        assert_eq!(limbs_shr_to_out(rs, ns, trailing_zeros), 0);
    } else {
        rs[..n_len].copy_from_slice(ns);
    }
    let r_len = if rs[n_len - 1] >= ds[d_len - 1] {
        n_len_plus_1
    } else if n_len == d_len {
        return false;
    } else {
        n_len
    };
    let rs = &mut rs[..r_len];
    let q_len = r_len - d_len;
    let rs = if d_len < DC_BDIV_QR_THRESHOLD || q_len < DC_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_schoolbook(qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else if d_len < MU_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_divide_and_conquer(qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else {
        let mut scratch = vec![0; limbs_modular_div_mod_barrett_scratch_len(r_len, d_len)];
        let ns = rs.to_vec();
        limbs_modular_div_mod_barrett(qs, rs, &ns, ds, &mut scratch);
        &mut rs[..d_len]
    };
    slice_test_zero(rs)
}}

// Interpreting two slices of `Limb`s, `ns` and `ds`, as the limbs (in ascending order) of two
// `Natural`s, determines whether the first `Natural` is divisible by the second. Both `Natural`s
// are taken by reference.
//
// `ns` must be at least as long as `ds`, both slices must be nonempty, and the last limb of both
// must be nonzero.
//
// # Worst-case complexity
// $T(n) = O(n \log n \log \log n)$
//
// $M(n) = O(n \log n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ns.len()`.
//
// # Panics
// Panics if `ns` is shorter than `ds`, `ds` is empty, or the last limbs of either slice are zero.
//
// This is equivalent to `mpn_divisible_p` from `mpn/generic/divis.c`, GMP 6.2.1, where `an >= dn`
// and neither are zero.
pub_test! {
#[allow(clippy::absurd_extreme_comparisons)]
limbs_divisible_by_ref_ref(ns: &[Limb], ds: &[Limb]) -> bool {
    let n_len = ns.len();
    let d_len = ds.len();
    assert_ne!(d_len, 0);
    assert!(n_len >= d_len);
    assert_ne!(*ns.last().unwrap(), 0);
    assert_ne!(*ds.last().unwrap(), 0);
    // Strip low zero limbs from ds, requiring n == 0 on those.
    let offset = slice_leading_zeros(ds);
    let (ns_lo, ns) = ns.split_at(offset);
    if !slice_test_zero(ns_lo) {
        // n has fewer low zero limbs than d, so not divisible
        return false;
    }
    let n_len = ns.len();
    let mut scratch;
    let mut ds = &ds[offset..];
    let d_len = ds.len();
    let d_0 = ds[0];
    // n must have at least as many low zero bits as d
    let d_mask = (d_0 & d_0.wrapping_neg()).wrapping_sub(1);
    if ns[0] & d_mask != 0 {
        return false;
    }
    if d_len == 1 {
        return if n_len >= BMOD_1_TO_MOD_1_THRESHOLD {
            limbs_mod_limb(ns, d_0) == 0
        } else {
            limbs_mod_exact_odd_limb(ns, d_0 >> d_0.trailing_zeros(), 0) == 0
        };
    }
    let trailing_zeros = TrailingZeros::trailing_zeros(d_0);
    if d_len == 2 {
        let d_1 = ds[1];
        if d_1 <= d_mask {
            let d_low = (d_0 >> trailing_zeros) | (d_1 << (Limb::WIDTH - trailing_zeros));
            return limbs_mod_limb_helper(ns, d_low) == 0;
        }
    }
    let n_len_plus_1 = n_len + 1;
    let mut rs_qs = vec![0; (n_len_plus_1 << 1) - d_len];
    let (rs, qs) = rs_qs.split_at_mut(n_len_plus_1);
    if trailing_zeros != 0 {
        scratch = vec![0; d_len];
        assert_eq!(limbs_shr_to_out(&mut scratch, ds, trailing_zeros), 0);
        ds = &scratch;
        assert_eq!(limbs_shr_to_out(rs, ns, trailing_zeros), 0);
    } else {
        rs[..n_len].copy_from_slice(ns);
    }
    let r_len = if rs[n_len - 1] >= ds[d_len - 1] {
        n_len_plus_1
    } else if n_len == d_len {
        return false;
    } else {
        n_len
    };
    let rs = &mut rs[..r_len];
    let q_len = r_len - d_len;
    let rs = if d_len < DC_BDIV_QR_THRESHOLD || q_len < DC_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_schoolbook(qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else if d_len < MU_BDIV_QR_THRESHOLD {
        let d_inv = limbs_modular_invert_limb(ds[0]).wrapping_neg();
        limbs_modular_div_mod_divide_and_conquer(qs, rs, ds, d_inv);
        &mut rs[q_len..]
    } else {
        let mut scratch = vec![0; limbs_modular_div_mod_barrett_scratch_len(r_len, d_len)];
        let ns = rs.to_vec();
        limbs_modular_div_mod_barrett(qs, rs, &ns, ds, &mut scratch);
        &mut rs[..d_len]
    };
    slice_test_zero(rs)
}}

impl Natural {
    fn divisible_by_limb(&self, other: Limb) -> bool {
        match (self, other) {
            (&Natural::ZERO, _) => true,
            (_, 0) => false,
            (&Natural(Small(small)), y) => small.divisible_by(y),
            (&Natural(Large(ref limbs)), y) => limbs_divisible_by_limb(limbs, y),
        }
    }

    // Tests whether other is divisible by self
    fn limb_divisible_by_natural(&self, other: Limb) -> bool {
        match (other, self) {
            (0, _) => true,
            (_, &Natural::ZERO) | (_, &Natural(Large(_))) => false,
            (x, &Natural(Small(small))) => x.divisible_by(small),
        }
    }
}

impl DivisibleBy<Natural> for Natural {
    /// Returns whether a [`Natural`] is divisible by another [`Natural`]; in other words, whether
    /// the first is a multiple of the second. Both [`Natural`]s are taken by value.
    ///
    /// This means that zero is divisible by any [`Natural`], including zero; but a nonzero
    /// [`Natural`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    /// use core::str::FromStr;
    ///
    /// assert_eq!(Natural::ZERO.divisible_by(Natural::ZERO), true);
    /// assert_eq!(Natural::from(100u32).divisible_by(Natural::from(3u32)), false);
    /// assert_eq!(Natural::from(102u32).divisible_by(Natural::from(3u32)), true);
    /// assert_eq!(
    ///     Natural::from_str("1000000000000000000000000").unwrap()
    ///             .divisible_by(Natural::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(mut self, mut other: Natural) -> bool {
        match (&mut self, &mut other) {
            (x, &mut Natural(Small(y))) => x.divisible_by_limb(y),
            (&mut Natural(Small(x)), y) => y.limb_divisible_by_natural(x),
            (Natural(Large(ref mut xs)), Natural(Large(ref mut ys))) => {
                xs.len() >= ys.len() && limbs_divisible_by(xs, ys)
            }
        }
    }
}

impl<'a> DivisibleBy<&'a Natural> for Natural {
    /// Returns whether a [`Natural`] is divisible by another [`Natural`]; in other words, whether
    /// the first is a multiple of the second. The first [`Natural`]s is taken by reference and the
    /// second by value.
    ///
    /// This means that zero is divisible by any [`Natural`], including zero; but a nonzero
    /// [`Natural`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    /// use core::str::FromStr;
    ///
    /// assert_eq!(Natural::ZERO.divisible_by(&Natural::ZERO), true);
    /// assert_eq!(Natural::from(100u32).divisible_by(&Natural::from(3u32)), false);
    /// assert_eq!(Natural::from(102u32).divisible_by(&Natural::from(3u32)), true);
    /// assert_eq!(
    ///     Natural::from_str("1000000000000000000000000").unwrap()
    ///             .divisible_by(&Natural::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(mut self, other: &'a Natural) -> bool {
        match (&mut self, other) {
            (x, &Natural(Small(y))) => x.divisible_by_limb(y),
            (&mut Natural(Small(x)), y) => y.limb_divisible_by_natural(x),
            (Natural(Large(ref mut xs)), &Natural(Large(ref ys))) => {
                xs.len() >= ys.len() && limbs_divisible_by_val_ref(xs, ys)
            }
        }
    }
}

impl<'a> DivisibleBy<Natural> for &'a Natural {
    /// Returns whether a [`Natural`] is divisible by another [`Natural`]; in other words, whether
    /// the first is a multiple of the second. The first [`Natural`]s are taken by reference and the
    /// second by value.
    ///
    /// This means that zero is divisible by any [`Natural`], including zero; but a nonzero
    /// [`Natural`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    /// use core::str::FromStr;
    ///
    /// assert_eq!((&Natural::ZERO).divisible_by(Natural::ZERO), true);
    /// assert_eq!((&Natural::from(100u32)).divisible_by(Natural::from(3u32)), false);
    /// assert_eq!((&Natural::from(102u32)).divisible_by(Natural::from(3u32)), true);
    /// assert_eq!(
    ///     (&Natural::from_str("1000000000000000000000000").unwrap())
    ///             .divisible_by(Natural::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(self, mut other: Natural) -> bool {
        match (self, &mut other) {
            (x, &mut Natural(Small(y))) => x.divisible_by_limb(y),
            (&Natural(Small(x)), y) => y.limb_divisible_by_natural(x),
            (&Natural(Large(ref xs)), Natural(Large(ref mut ys))) => {
                xs.len() >= ys.len() && limbs_divisible_by_ref_val(xs, ys)
            }
        }
    }
}

impl<'a, 'b> DivisibleBy<&'b Natural> for &'a Natural {
    /// Returns whether a [`Natural`] is divisible by another [`Natural`]; in other words, whether
    /// the first is a multiple of the second. Both [`Natural`]s are taken by reference.
    ///
    /// This means that zero is divisible by any [`Natural`], including zero; but a nonzero
    /// [`Natural`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    /// use core::str::FromStr;
    ///
    /// assert_eq!((&Natural::ZERO).divisible_by(&Natural::ZERO), true);
    /// assert_eq!((&Natural::from(100u32)).divisible_by(&Natural::from(3u32)), false);
    /// assert_eq!((&Natural::from(102u32)).divisible_by(&Natural::from(3u32)), true);
    /// assert_eq!(
    ///     (&Natural::from_str("1000000000000000000000000").unwrap())
    ///             .divisible_by(&Natural::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(self, other: &'b Natural) -> bool {
        match (self, other) {
            (x, &Natural(Small(y))) => x.divisible_by_limb(y),
            (&Natural(Small(x)), y) => y.limb_divisible_by_natural(x),
            (&Natural(Large(ref xs)), &Natural(Large(ref ys))) => {
                xs.len() >= ys.len() && limbs_divisible_by_ref_ref(xs, ys)
            }
        }
    }
}