1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::Integer;
use core::iter::{once, Chain, Once, Rev};
use itertools::{Interleave, Itertools};
use malachite_base::num::basic::traits::{NegativeOne, One, Zero};

/// Generates all [`Integer`]s in a finite interval, in ascending order.
///
/// This `struct` is created by the [`integer_increasing_range`] and
/// [`integer_increasing_inclusive_range`]; see their documentation for more.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct IntegerIncreasingRange {
    a: Integer,
    b: Integer,
}

impl Iterator for IntegerIncreasingRange {
    type Item = Integer;

    fn next(&mut self) -> Option<Integer> {
        if self.a == self.b {
            None
        } else {
            let result = self.a.clone();
            self.a += Integer::ONE;
            Some(result)
        }
    }
}

impl DoubleEndedIterator for IntegerIncreasingRange {
    fn next_back(&mut self) -> Option<Integer> {
        if self.a == self.b {
            None
        } else {
            self.b -= Integer::ONE;
            Some(self.b.clone())
        }
    }
}

/// Generates all [`Integer`]s greater than or equal to some [`Integer`], in ascending order.
///
/// This `struct` is created by [`integer_increasing_range_to_infinity`]; see its documentation for
/// more.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct IntegerIncreasingRangeToInfinity {
    a: Integer,
}

impl Iterator for IntegerIncreasingRangeToInfinity {
    type Item = Integer;

    fn next(&mut self) -> Option<Integer> {
        let result = self.a.clone();
        self.a += Integer::ONE;
        Some(result)
    }
}

/// Generates all [`Integer`]s less than or equal to some [`Integer`], in ascending order.
///
/// This `struct` is created by [`integer_decreasing_range_to_negative_infinity`]; see its
/// documentation for more.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct IntegerDecreasingRangeToNegativeInfinity {
    a: Integer,
}

impl Iterator for IntegerDecreasingRangeToNegativeInfinity {
    type Item = Integer;

    fn next(&mut self) -> Option<Integer> {
        let result = self.a.clone();
        self.a -= Integer::ONE;
        Some(result)
    }
}

/// Generates all [`Integer`]s in a finite interval, in order of increasing absolute value.
///
/// This `struct` is created [`exhaustive_integer_range`] and
/// [`exhaustive_integer_inclusive_range`]; see their documentation for more.
#[derive(Clone, Debug)]
pub enum ExhaustiveIntegerRange {
    NonNegative(IntegerIncreasingRange),
    NonPositive(Rev<IntegerIncreasingRange>),
    BothSigns(
        Chain<Once<Integer>, Interleave<IntegerIncreasingRange, Rev<IntegerIncreasingRange>>>,
    ),
}

impl Iterator for ExhaustiveIntegerRange {
    type Item = Integer;

    fn next(&mut self) -> Option<Integer> {
        match self {
            ExhaustiveIntegerRange::NonNegative(ref mut xs) => xs.next(),
            ExhaustiveIntegerRange::NonPositive(ref mut xs) => xs.next(),
            ExhaustiveIntegerRange::BothSigns(ref mut xs) => xs.next(),
        }
    }
}

/// Generates all [`Integer`]s greater than or equal to some [`Integer`], in order of increasing
/// absolute value.
///
/// This `struct` is created by [`exhaustive_integer_range_to_infinity`]; see its documentation for
/// more.
#[derive(Clone, Debug)]
pub enum ExhaustiveIntegerRangeToInfinity {
    NonNegative(IntegerIncreasingRangeToInfinity),
    BothSigns(
        Chain<
            Once<Integer>,
            Interleave<IntegerIncreasingRangeToInfinity, Rev<IntegerIncreasingRange>>,
        >,
    ),
}

impl Iterator for ExhaustiveIntegerRangeToInfinity {
    type Item = Integer;

    fn next(&mut self) -> Option<Integer> {
        match self {
            ExhaustiveIntegerRangeToInfinity::NonNegative(ref mut xs) => xs.next(),
            ExhaustiveIntegerRangeToInfinity::BothSigns(ref mut xs) => xs.next(),
        }
    }
}

/// Generates all [`Integer`]s less than or equal to some [`Integer`], in order of increasing
/// absolute value.
///
/// This `struct` is created by [`exhaustive_integer_range_to_negative_infinity`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub enum ExhaustiveIntegerRangeToNegativeInfinity {
    NonPositive(IntegerDecreasingRangeToNegativeInfinity),
    BothSigns(
        Chain<
            Once<Integer>,
            Interleave<IntegerIncreasingRange, IntegerDecreasingRangeToNegativeInfinity>,
        >,
    ),
}

impl Iterator for ExhaustiveIntegerRangeToNegativeInfinity {
    type Item = Integer;

    fn next(&mut self) -> Option<Integer> {
        match self {
            ExhaustiveIntegerRangeToNegativeInfinity::NonPositive(ref mut xs) => xs.next(),
            ExhaustiveIntegerRangeToNegativeInfinity::BothSigns(ref mut xs) => xs.next(),
        }
    }
}

#[doc(hidden)]
pub type IntegerUpDown =
    Interleave<IntegerIncreasingRangeToInfinity, IntegerDecreasingRangeToNegativeInfinity>;

/// Generates all [`Integer`]s, in order of increasing absolute value. When two [`Integer`]s have
/// the same absolute value, the positive one comes first.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(1)$, amortized.
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_integers;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_integers(), 10),
///     "[0, 1, -1, 2, -2, 3, -3, 4, -4, 5, ...]"
/// )
/// ```
#[inline]
pub fn exhaustive_integers() -> Chain<Once<Integer>, IntegerUpDown> {
    once(Integer::ZERO).chain(exhaustive_nonzero_integers())
}

/// Generates all natural [`Integer`]s in ascending order.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(1)$, amortized.
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_natural_integers;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_natural_integers(), 10),
///     "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...]"
/// )
/// ```
#[inline]
pub const fn exhaustive_natural_integers() -> IntegerIncreasingRangeToInfinity {
    integer_increasing_range_to_infinity(Integer::ZERO)
}

/// Generates all positive [`Integer`]s in ascending order.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(1)$, amortized.
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_positive_integers;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_positive_integers(), 10),
///     "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...]"
/// )
/// ```
#[inline]
pub const fn exhaustive_positive_integers() -> IntegerIncreasingRangeToInfinity {
    integer_increasing_range_to_infinity(Integer::ONE)
}

/// Generates all negative [`Integer`]s in descending order.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(1)$, amortized.
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_negative_integers;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_negative_integers(), 10),
///     "[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, ...]"
/// )
/// ```
#[inline]
pub const fn exhaustive_negative_integers() -> IntegerDecreasingRangeToNegativeInfinity {
    integer_decreasing_range_to_negative_infinity(Integer::NEGATIVE_ONE)
}

/// Generates all nonzero [`Integer`]s, in order of increasing absolute value. When two [`Integer`]s
/// have the same absolute value, the positive one comes first.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(1)$, amortized.
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_nonzero_integers;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_nonzero_integers(), 10),
///     "[1, -1, 2, -2, 3, -3, 4, -4, 5, -5, ...]"
/// )
/// ```
#[inline]
pub fn exhaustive_nonzero_integers() -> IntegerUpDown {
    exhaustive_positive_integers().interleave(exhaustive_negative_integers())
}

/// Generates all [`Integer`]s in the half-open interval $[a, b)$, in ascending order.
///
/// $a$ must be less than or equal to $b$. If $a$ and $b$ are equal, the range is empty. To generate
/// all [`Integer`]s in an infinite interval in ascending or descending order, use
/// [`integer_increasing_range_to_infinity`] or [`integer_decreasing_range_to_negative_infinity`].
///
/// The output is $(k)_{k=a}^{b-1}$.
///
/// The output length is $b - a$.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the previously-generated value is positive and its
/// least-significant limb is `Limb::MAX`, the worst case space and time complexities are constant.
///
/// # Panics
/// Panics if $a > b$.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::strings::ToDebugString;
/// use malachite_nz::integer::exhaustive::integer_increasing_range;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     integer_increasing_range(Integer::from(-4), Integer::from(4))
///         .collect_vec()
///         .to_debug_string(),
///     "[-4, -3, -2, -1, 0, 1, 2, 3]"
/// )
/// ```
#[inline]
pub fn integer_increasing_range(a: Integer, b: Integer) -> IntegerIncreasingRange {
    assert!(a <= b, "a must be less than or equal to b. a: {a}, b: {b}");
    IntegerIncreasingRange { a, b }
}

/// Generates all [`Integer`]s in the closed interval $[a, b]$, in ascending order.
///
/// $a$ must be less than or equal to $b$. If $a$ and $b$ are equal, the range contains a single
/// element. To generate all [`Integer`]s in an infinite interval in ascending or descending order,
/// use [`integer_increasing_range_to_infinity`] or
/// [`integer_decreasing_range_to_negative_infinity`].
///
/// The output is $(k)_{k=a}^{b}$.
///
/// The output length is $b - a + 1$.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the previously-generated value is positive and its
/// least-significant limb is `Limb::MAX`, the worst case space and time complexities are constant.
///
/// # Panics
/// Panics if $a > b$.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::strings::ToDebugString;
/// use malachite_nz::integer::exhaustive::integer_increasing_inclusive_range;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     integer_increasing_inclusive_range(Integer::from(-4), Integer::from(4))
///         .collect_vec()
///         .to_debug_string(),
///     "[-4, -3, -2, -1, 0, 1, 2, 3, 4]"
/// )
/// ```
#[inline]
pub fn integer_increasing_inclusive_range(a: Integer, b: Integer) -> IntegerIncreasingRange {
    assert!(a <= b, "a must be less than or equal to b. a: {a}, b: {b}");
    IntegerIncreasingRange {
        a,
        b: b + Integer::ONE,
    }
}

/// Generates all [`Integer`]s greater than or equal to some number $a$, in ascending order.
///
/// The output is $(k)_{k=a}^{\infty}$.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the previously-generated value is positive and its
/// least-significant limb is `Limb::MAX`, the worst case space and time complexities are constant.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::integer_increasing_range_to_infinity;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     prefix_to_string(integer_increasing_range_to_infinity(Integer::from(-4)), 10),
///     "[-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...]"
/// )
/// ```
#[inline]
pub const fn integer_increasing_range_to_infinity(a: Integer) -> IntegerIncreasingRangeToInfinity {
    IntegerIncreasingRangeToInfinity { a }
}

/// Generates all [`Integer`]s less than or equal to some number $a$, in descending order.
///
/// The output is $(-k)_{k=-a}^{\infty}$.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the previously-generated value is negative and the
/// least-significant limb of its absolute value is `Limb::MAX`, the worst case space and time
/// complexities are constant.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::integer_decreasing_range_to_negative_infinity;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     prefix_to_string(
///         integer_decreasing_range_to_negative_infinity(Integer::from(4)),
///         10
///     ),
///     "[4, 3, 2, 1, 0, -1, -2, -3, -4, -5, ...]"
/// )
/// ```
#[inline]
pub const fn integer_decreasing_range_to_negative_infinity(
    a: Integer,
) -> IntegerDecreasingRangeToNegativeInfinity {
    IntegerDecreasingRangeToNegativeInfinity { a }
}

/// Generates all [`Integer`]s in the half-open interval $[a, b)$, in order of increasing absolute
/// value.
///
/// When two [`Integer`]s have the same absolute value, the positive one comes first. $a$ must be
/// less than or equal to $b$. If $a$ and $b$ are equal, the range is empty.
///
/// The output satisfies $(|x_i|, \operatorname{sgn}(-x_i)) <_\mathrm{lex} (|x_j|,
/// \operatorname{sgn}(-x_j))$ whenever $i, j \\in [0, b - a)$ and $i < j$.
///
/// The output length is $b - a$.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the least-significant limb of the absolute value of the
/// previously-generated value is `Limb::MAX`, the worst case space and time complexities are
/// constant.
///
/// # Panics
/// Panics if $a > b$.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::strings::ToDebugString;
/// use malachite_nz::integer::exhaustive::exhaustive_integer_range;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     exhaustive_integer_range(Integer::from(-4), Integer::from(4))
///         .collect_vec()
///         .to_debug_string(),
///     "[0, 1, -1, 2, -2, 3, -3, -4]"
/// )
/// ```
pub fn exhaustive_integer_range(a: Integer, b: Integer) -> ExhaustiveIntegerRange {
    assert!(a <= b, "a must be less than or equal to b. a: {a}, b: {b}");
    if a >= 0 {
        ExhaustiveIntegerRange::NonNegative(integer_increasing_range(a, b))
    } else if b <= 0 {
        ExhaustiveIntegerRange::NonPositive(integer_increasing_range(a, b).rev())
    } else {
        ExhaustiveIntegerRange::BothSigns(
            once(Integer::ZERO).chain(
                integer_increasing_range(Integer::ONE, b)
                    .interleave(integer_increasing_range(a, Integer::ZERO).rev()),
            ),
        )
    }
}

/// Generates all [`Integer`]s in the closed interval $[a, b]$, in order of increasing absolute
/// value.
///
/// When two [`Integer`]s have the same absolute value, the positive one comes first. $a$ must be
/// less than or equal to $b$. If $a$ and $b$ are equal, the range contains a single element.
///
/// The output satisfies $(|x_i|, \operatorname{sgn}(-x_i)) <_\mathrm{lex} (|x_j|,
/// \operatorname{sgn}(-x_j))$ whenever $i, j \\in [0, b - a]$ and $i < j$.
///
/// The output length is $b - a + 1$.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the least-significant limb of the absolute value of the
/// previously-generated value is `Limb::MAX`, the worst case space and time complexities are
/// constant.
///
/// # Panics
/// Panics if $a > b$.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::strings::ToDebugString;
/// use malachite_nz::integer::exhaustive::exhaustive_integer_inclusive_range;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     exhaustive_integer_inclusive_range(Integer::from(-4), Integer::from(4))
///         .collect_vec()
///         .to_debug_string(),
///     "[0, 1, -1, 2, -2, 3, -3, 4, -4]"
/// )
/// ```
pub fn exhaustive_integer_inclusive_range(a: Integer, b: Integer) -> ExhaustiveIntegerRange {
    assert!(a <= b, "a must be less than or equal to b. a: {a}, b: {b}");
    if a >= 0 {
        ExhaustiveIntegerRange::NonNegative(integer_increasing_inclusive_range(a, b))
    } else if b <= 0 {
        ExhaustiveIntegerRange::NonPositive(integer_increasing_inclusive_range(a, b).rev())
    } else {
        ExhaustiveIntegerRange::BothSigns(
            once(Integer::ZERO).chain(
                integer_increasing_inclusive_range(Integer::ONE, b)
                    .interleave(integer_increasing_inclusive_range(a, Integer::NEGATIVE_ONE).rev()),
            ),
        )
    }
}

/// Generates all [`Integer`]s greater than or equal to some number $a$, in order of increasing
/// absolute value.
///
/// When two [`Integer`]s have the same absolute value, the positive one comes first.
///
/// The output satisfies $(|x_i|, \operatorname{sgn}(-x_i)) <_\mathrm{lex} (|x_j|,
/// \operatorname{sgn}(-x_j))$ whenever $i < j$.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the previously-generated value is positive and its
/// least-significant limb is `Limb::MAX`, the worst case space and time complexities are constant.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_integer_range_to_infinity;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_integer_range_to_infinity(Integer::from(-2)), 10),
///     "[0, 1, -1, 2, -2, 3, 4, 5, 6, 7, ...]"
/// )
/// ```
#[inline]
pub fn exhaustive_integer_range_to_infinity(a: Integer) -> ExhaustiveIntegerRangeToInfinity {
    if a >= 0 {
        ExhaustiveIntegerRangeToInfinity::NonNegative(integer_increasing_range_to_infinity(a))
    } else {
        ExhaustiveIntegerRangeToInfinity::BothSigns(
            once(Integer::ZERO).chain(
                integer_increasing_range_to_infinity(Integer::ONE)
                    .interleave(integer_increasing_range(a, Integer::ZERO).rev()),
            ),
        )
    }
}

/// Generates all [`Integer`]s less than or equal to some number $a$, in order of increasing
/// absolute value.
///
/// When two [`Integer`]s have the same absolute value, the positive one comes first.
///
/// The output satisfies $(|x_i|, \operatorname{sgn}(-x_i)) <_\mathrm{lex} (|x_j|,
/// \operatorname{sgn}(-x_j))$ whenever $i < j$.
///
/// The output length is infinite.
///
/// # Worst-case complexity per iteration
/// $T(i) = O(i)$
///
/// $M(i) = O(i)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration number.
///
/// Although the time and space complexities are worst-case linear, the worst case is very rare. If
/// we exclude the cases where the the previously-generated value is positive and its
/// least-significant limb is `Limb::MAX`, the worst case space and time complexities are constant.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_nz::integer::exhaustive::exhaustive_integer_range_to_negative_infinity;
/// use malachite_nz::integer::Integer;
///
/// assert_eq!(
///     prefix_to_string(
///         exhaustive_integer_range_to_negative_infinity(Integer::from(2)),
///         10
///     ),
///     "[0, 1, -1, 2, -2, -3, -4, -5, -6, -7, ...]"
/// )
/// ```
#[inline]
pub fn exhaustive_integer_range_to_negative_infinity(
    a: Integer,
) -> ExhaustiveIntegerRangeToNegativeInfinity {
    if a <= 0 {
        ExhaustiveIntegerRangeToNegativeInfinity::NonPositive(
            integer_decreasing_range_to_negative_infinity(a),
        )
    } else {
        ExhaustiveIntegerRangeToNegativeInfinity::BothSigns(once(Integer::ZERO).chain(
            integer_increasing_range(Integer::ONE, a + Integer::ONE).interleave(
                integer_decreasing_range_to_negative_infinity(Integer::NEGATIVE_ONE),
            ),
        ))
    }
}