malachite_nz/natural/logic/or.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// Uses code adopted from the GNU MP Library.
4//
5// Copyright © 1991-2018 Free Software Foundation, Inc.
6//
7// This file is part of Malachite.
8//
9// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
10// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
11// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
12
13use crate::natural::InnerNatural::{Large, Small};
14use crate::natural::Natural;
15use crate::platform::Limb;
16use alloc::vec::Vec;
17use core::mem::swap;
18use core::ops::{BitOr, BitOrAssign};
19
20// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, returns the
21// limbs of the bitwise or of the `Natural` and a `Limb`. `xs` cannot be empty.
22//
23// # Worst-case complexity
24// $T(n) = O(n)$
25//
26// $M(n) = O(n)$
27//
28// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
29//
30// # Panics
31// Panics if `xs` is empty.
32pub fn limbs_or_limb(xs: &[Limb], y: Limb) -> Vec<Limb> {
33 let mut result = xs.to_vec();
34 limbs_or_limb_in_place(&mut result, y);
35 result
36}
37
38// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, writes the
39// limbs of the bitwise or of the `Natural` and a `Limb` to an output slice. The output slice must
40// be at least as long as the input slice. `xs` cannot be empty.
41//
42// # Worst-case complexity
43// $T(n) = O(n)$
44//
45// $M(n) = O(1)$
46//
47// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
48//
49// # Panics
50// Panics if `out` is shorter than `xs` or if `xs` is empty.
51pub_test! {limbs_or_limb_to_out(out: &mut [Limb], xs: &[Limb], y: Limb) {
52 out[..xs.len()].copy_from_slice(xs);
53 limbs_or_limb_in_place(out, y);
54}}
55
56// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, writes the
57// limbs of the bitwise or of the `Natural` and a `Limb` to the input slice. `xs` cannot be empty.
58//
59// # Worst-case complexity
60// Constant time and additional memory.
61//
62// # Panics
63// Panics if `xs` is empty.
64pub_test! {limbs_or_limb_in_place(xs: &mut [Limb], y: Limb) {
65 xs[0] |= y;
66}}
67
68// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
69// `Natural`s, returns a `Vec` of the limbs of the bitwise or of the `Natural`s. The length of the
70// result is the length of one of the input slices.
71//
72// # Worst-case complexity
73// $T(n) = O(n)$
74//
75// $M(n) = O(n)$
76//
77// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
78//
79// # Panics
80// Panics if `xs` and `ys` have different lengths.
81//
82// This is equivalent to `mpn_ior_n` from `gmp-impl.h`, GMP 6.2.1, where `rp` is returned.
83pub_test! {limbs_or_same_length(xs: &[Limb], ys: &[Limb]) -> Vec<Limb> {
84 assert_eq!(xs.len(), ys.len());
85 xs.iter().zip(ys.iter()).map(|(x, y)| x | y).collect()
86}}
87
88// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, returns a
89// `Vec` of the limbs of the bitwise or of the `Natural`s. The length of the result is the length of
90// the longer input slice.
91//
92// # Worst-case complexity
93// $T(n) = O(n)$
94//
95// $M(n) = O(n)$
96//
97// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
98//
99// This is equivalent to `mpz_ior` from `mpz/ior.c`, GMP 6.2.1, where `res` is returned and both
100// inputs are non-negative.
101pub_test! {limbs_or(xs: &[Limb], ys: &[Limb]) -> Vec<Limb> {
102 let xs_len = xs.len();
103 let ys_len = ys.len();
104 let mut result;
105 if xs_len >= ys_len {
106 result = limbs_or_same_length(&xs[..ys_len], ys);
107 result.extend_from_slice(&xs[ys_len..]);
108 } else {
109 result = limbs_or_same_length(xs, &ys[..xs_len]);
110 result.extend_from_slice(&ys[xs_len..]);
111 }
112 result
113}}
114
115// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
116// `Natural`s, writes the limbs of the bitwise or of the `Natural`s to an output slice. The output
117// must be at least as long as one of the input slices.
118//
119// # Worst-case complexity
120// $T(n) = O(n)$
121//
122// $M(n) = O(1)$
123//
124// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
125//
126// # Panics
127// Panics if `xs` and `ys` have different lengths or if `out` is too short.
128//
129// This is equivalent to `mpn_ior_n` from `gmp-impl.h`, GMP 6.2.1.
130pub_test! {limbs_or_same_length_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) {
131 let len = xs.len();
132 assert_eq!(len, ys.len());
133 assert!(out.len() >= len);
134 for (out_x, (x, y)) in out.iter_mut().zip(xs.iter().zip(ys.iter())) {
135 *out_x = x | y;
136 }
137}}
138
139// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
140// the limbs of the bitwise or of the `Natural`s to an output slice. The output must be at least as
141// long as the longer input slice.
142//
143// # Worst-case complexity
144// $T(n) = O(n)$
145//
146// $M(n) = O(1)$
147//
148// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
149//
150// # Panics
151// Panics if `out` is too short.
152//
153// This is equivalent to `mpz_ior` from `mpz/ior.c`, GMP 6.2.1, where both inputs are non-negative.
154pub_test! {limbs_or_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) {
155 let xs_len = xs.len();
156 let ys_len = ys.len();
157 if xs_len >= ys_len {
158 assert!(out.len() >= xs_len);
159 limbs_or_same_length_to_out(out, &xs[..ys_len], ys);
160 out[ys_len..xs_len].copy_from_slice(&xs[ys_len..]);
161 } else {
162 assert!(out.len() >= ys_len);
163 limbs_or_same_length_to_out(out, xs, &ys[..xs_len]);
164 out[xs_len..ys_len].copy_from_slice(&ys[xs_len..]);
165 }
166}}
167
168// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
169// `Natural`s, writes the limbs of the bitwise or of the `Natural`s to the first (left) slice.
170//
171// # Worst-case complexity
172// $T(n) = O(n)$
173//
174// $M(n) = O(1)$
175//
176// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
177//
178// # Panics
179// Panics if `xs` and `ys` have different lengths.
180//
181// This is equivalent to `mpn_ior_n` from `gmp-impl.h`, GMP 6.2.1, where `rp == up`.
182pub_test! {limbs_or_same_length_in_place_left(xs: &mut [Limb], ys: &[Limb]) {
183 assert_eq!(xs.len(), ys.len());
184 for (x, &y) in xs.iter_mut().zip(ys.iter()) {
185 *x |= y;
186 }
187}}
188
189// Interpreting a `Vec` of `Limb`s and a slice of `Limb`s as the limbs (in ascending order) of two
190// `Natural`s, writes the limbs of the bitwise or of the `Natural`s to the `Vec`. If `ys` is longer
191// than `xs`, `xs` will be extended.
192//
193// # Worst-case complexity
194// $T(n) = O(n)$
195//
196// $M(n) = O(n)$
197//
198// where $T$ is time, $M$ is additional memory, and $n$ is `ys.len()`.
199//
200// This is equivalent to `mpz_ior` from `mpz/ior.c`, GMP 6.2.1, where `res == op1` and both inputs
201// are non-negative.
202pub_test! {limbs_or_in_place_left(xs: &mut Vec<Limb>, ys: &[Limb]) {
203 let xs_len = xs.len();
204 let ys_len = ys.len();
205 if xs_len >= ys_len {
206 limbs_or_same_length_in_place_left(&mut xs[..ys_len], ys);
207 } else {
208 limbs_or_same_length_in_place_left(xs, &ys[..xs_len]);
209 xs.extend_from_slice(&ys[xs_len..]);
210 }
211}}
212
213// Interpreting two `Vec`s of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
214// the limbs of the bitwise or of the `Natural`s to the longer slice (or the first one, if they are
215// equally long). Returns a `bool` which is `false` when the output is to the first slice and `true`
216// when it's to the second slice.
217//
218// # Worst-case complexity
219// $T(n) = O(n)$
220//
221// $M(n) = O(1)$
222//
223// where $T$ is time, $M$ is additional memory, and $n$ is `min(xs.len(), ys.len())`.
224//
225// This is equivalent to `mpz_ior` from `mpz/ior.c`, GMP 6.2.1, where both inputs are non-negative
226// and the result is written to the longer input slice.
227pub_test! {limbs_or_in_place_either(xs: &mut [Limb], ys: &mut [Limb]) -> bool {
228 let xs_len = xs.len();
229 let ys_len = ys.len();
230 let right = xs_len < ys_len;
231 if right {
232 limbs_or_same_length_in_place_left(&mut ys[..xs_len], xs);
233 } else {
234 limbs_or_same_length_in_place_left(&mut xs[..ys_len], ys);
235 }
236 right
237}}
238
239impl Natural {
240 #[inline]
241 fn or_limb(mut self, other: Limb) -> Natural {
242 self.or_assign_limb(other);
243 self
244 }
245
246 fn or_limb_ref(&self, other: Limb) -> Natural {
247 Natural(match self {
248 Natural(Small(small)) => Small(small | other),
249 Natural(Large(limbs)) => Large(limbs_or_limb(limbs, other)),
250 })
251 }
252
253 fn or_assign_limb(&mut self, other: Limb) {
254 match self {
255 Natural(Small(small)) => *small |= other,
256 Natural(Large(limbs)) => limbs_or_limb_in_place(limbs, other),
257 }
258 }
259}
260
261impl BitOr<Natural> for Natural {
262 type Output = Natural;
263
264 /// Takes the bitwise or of two [`Natural`]s, taking both by value.
265 ///
266 /// $$
267 /// f(x, y) = x \vee y.
268 /// $$
269 ///
270 /// # Worst-case complexity
271 /// $T(n) = O(n)$
272 ///
273 /// $M(n) = O(1)$
274 ///
275 /// where $T$ is time, $M$ is additional memory, and $n$ is `min(self.significant_bits(),
276 /// other.significant_bits())`.
277 ///
278 /// # Examples
279 /// ```
280 /// use malachite_base::num::arithmetic::traits::Pow;
281 /// use malachite_base::num::basic::traits::One;
282 /// use malachite_nz::natural::Natural;
283 ///
284 /// assert_eq!(Natural::from(123u32) | Natural::from(456u32), 507);
285 /// assert_eq!(
286 /// Natural::from(10u32).pow(12) | (Natural::from(10u32).pow(12) - Natural::ONE),
287 /// 1000000004095u64
288 /// );
289 /// ```
290 #[inline]
291 fn bitor(mut self, other: Natural) -> Natural {
292 self |= other;
293 self
294 }
295}
296
297impl<'a> BitOr<&'a Natural> for Natural {
298 type Output = Natural;
299
300 /// Takes the bitwise or of two [`Natural`]s, taking the first by value and the second by
301 /// reference.
302 ///
303 /// $$
304 /// f(x, y) = x \vee y.
305 /// $$
306 ///
307 /// # Worst-case complexity
308 /// $T(n) = O(n)$
309 ///
310 /// $M(n) = O(n)$
311 ///
312 /// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
313 ///
314 /// # Examples
315 /// ```
316 /// use malachite_base::num::arithmetic::traits::Pow;
317 /// use malachite_base::num::basic::traits::One;
318 /// use malachite_nz::natural::Natural;
319 ///
320 /// assert_eq!(Natural::from(123u32) | &Natural::from(456u32), 507);
321 /// assert_eq!(
322 /// Natural::from(10u32).pow(12) | &(Natural::from(10u32).pow(12) - Natural::ONE),
323 /// 1000000004095u64
324 /// );
325 /// ```
326 #[inline]
327 fn bitor(mut self, other: &'a Natural) -> Natural {
328 self |= other;
329 self
330 }
331}
332
333impl BitOr<Natural> for &Natural {
334 type Output = Natural;
335
336 /// Takes the bitwise or of two [`Natural`]s, taking the first by reference and the second by
337 /// value.
338 ///
339 /// $$
340 /// f(x, y) = x \vee y.
341 /// $$
342 ///
343 /// # Worst-case complexity
344 /// $T(n) = O(n)$
345 ///
346 /// $M(n) = O(n)$
347 ///
348 /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
349 ///
350 /// # Examples
351 /// ```
352 /// use malachite_base::num::arithmetic::traits::Pow;
353 /// use malachite_base::num::basic::traits::One;
354 /// use malachite_nz::natural::Natural;
355 ///
356 /// assert_eq!(&Natural::from(123u32) | Natural::from(456u32), 507);
357 /// assert_eq!(
358 /// &Natural::from(10u32).pow(12) | (Natural::from(10u32).pow(12) - Natural::ONE),
359 /// 1000000004095u64
360 /// );
361 /// ```
362 #[inline]
363 fn bitor(self, mut other: Natural) -> Natural {
364 other |= self;
365 other
366 }
367}
368
369impl BitOr<&Natural> for &Natural {
370 type Output = Natural;
371
372 /// Takes the bitwise or of two [`Natural`]s, taking both by reference.
373 ///
374 /// $$
375 /// f(x, y) = x \vee y.
376 /// $$
377 ///
378 /// # Worst-case complexity
379 /// $T(n) = O(n)$
380 ///
381 /// $M(n) = O(n)$
382 ///
383 /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
384 /// other.significant_bits())`.
385 ///
386 /// # Examples
387 /// ```
388 /// use malachite_base::num::arithmetic::traits::Pow;
389 /// use malachite_base::num::basic::traits::One;
390 /// use malachite_nz::natural::Natural;
391 ///
392 /// assert_eq!(&Natural::from(123u32) | &Natural::from(456u32), 507);
393 /// assert_eq!(
394 /// &Natural::from(10u32).pow(12) | &(Natural::from(10u32).pow(12) - Natural::ONE),
395 /// 1000000004095u64
396 /// );
397 /// ```
398 fn bitor(self, other: &Natural) -> Natural {
399 match (self, other) {
400 (x, &Natural(Small(y))) => x.or_limb_ref(y),
401 (&Natural(Small(x)), y) => y.or_limb_ref(x),
402 (Natural(Large(xs)), Natural(Large(ys))) => Natural(Large(limbs_or(xs, ys))),
403 }
404 }
405}
406
407impl BitOrAssign<Natural> for Natural {
408 /// Bitwise-ors a [`Natural`] with another [`Natural`] in place, taking the [`Natural`] on the
409 /// right-hand side by value.
410 ///
411 /// # Worst-case complexity
412 /// $T(n) = O(n)$
413 ///
414 /// $M(n) = O(1)$
415 ///
416 /// where $T$ is time, $M$ is additional memory, and $n$ is `min(self.significant_bits(),
417 /// other.significant_bits())`.
418 ///
419 /// # Examples
420 /// ```
421 /// use malachite_base::num::basic::traits::Zero;
422 /// use malachite_nz::natural::Natural;
423 ///
424 /// let mut x = Natural::ZERO;
425 /// x |= Natural::from(0x0000000fu32);
426 /// x |= Natural::from(0x00000f00u32);
427 /// x |= Natural::from(0x000f_0000u32);
428 /// x |= Natural::from(0x0f000000u32);
429 /// assert_eq!(x, 0x0f0f_0f0f);
430 /// ```
431 fn bitor_assign(&mut self, mut other: Natural) {
432 match (&mut *self, &mut other) {
433 (_, Natural(Small(y))) => self.or_assign_limb(*y),
434 (Natural(Small(x)), _) => *self = other.or_limb(*x),
435 (Natural(Large(xs)), Natural(Large(ys))) => {
436 if limbs_or_in_place_either(xs, ys) {
437 swap(xs, ys);
438 }
439 }
440 }
441 }
442}
443
444impl<'a> BitOrAssign<&'a Natural> for Natural {
445 /// Bitwise-ors a [`Natural`] with another [`Natural`] in place, taking the [`Natural`] on the
446 /// right-hand side by reference.
447 ///
448 /// # Worst-case complexity
449 /// $T(n) = O(n)$
450 ///
451 /// $M(n) = O(n)$
452 ///
453 /// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
454 ///
455 /// # Examples
456 /// ```
457 /// use malachite_base::num::basic::traits::Zero;
458 /// use malachite_nz::natural::Natural;
459 ///
460 /// let mut x = Natural::ZERO;
461 /// x |= &Natural::from(0x0000000fu32);
462 /// x |= &Natural::from(0x00000f00u32);
463 /// x |= &Natural::from(0x000f_0000u32);
464 /// x |= &Natural::from(0x0f000000u32);
465 /// assert_eq!(x, 0x0f0f_0f0f);
466 /// ```
467 fn bitor_assign(&mut self, other: &'a Natural) {
468 match (&mut *self, other) {
469 (_, Natural(Small(y))) => self.or_assign_limb(*y),
470 (Natural(Small(x)), _) => *self = other.or_limb_ref(*x),
471 (Natural(Large(xs)), Natural(Large(ys))) => {
472 limbs_or_in_place_left(xs, ys);
473 }
474 }
475 }
476}