1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use crate::natural::Natural;
use malachite_base::named::Named;
use malachite_base::num::arithmetic::traits::DivisibleByPowerOf2;
use malachite_base::num::basic::floats::PrimitiveFloat;
use malachite_base::num::conversion::traits::{
    CheckedFrom, ConvertibleFrom, ExactFrom, RawMantissaAndExponent, RoundingFrom,
    SciMantissaAndExponent, WrappingFrom,
};
use malachite_base::rounding_modes::RoundingMode;

macro_rules! float_impls {
    ($f: ident) => {
        impl<'a> RoundingFrom<&'a Natural> for $f {
            /// Converts a [`Natural`] to a primitive float according to a specified
            /// [`RoundingMode`](malachite_base::rounding_modes::RoundingMode).
            ///
            /// - If the rounding mode is `Floor` or `Down`, the largest float less than or equal
            ///   to the [`Natural`] is returned. If the [`Natural`] is greater than the maximum
            ///   finite float, then the maximum finite float is returned.
            /// - If the rounding mode is `Ceiling` or `Up`, the smallest float greater than or
            ///   equal to the [`Natural`] is returned. If the [`Natural`] is greater than the
            ///   maximum finite float, then positive infinity is returned.
            /// - If the rounding mode is `Nearest`, then the nearest float is returned. If the
            ///   [`Natural`] is exactly between two floats, the float with the zero
            ///   least-significant bit in its representation is selected. If the [`Natural`] is
            ///   greater than the maximum finite float, then the maximum finite float is returned.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `value.significant_bits()`.
            ///
            /// # Panics
            /// Panics if the rounding mode is `Exact` and `value` cannot be represented exactly.
            ///
            /// # Examples
            /// See [here](super::primitive_float_from_natural#rounding_from).
            fn rounding_from(value: &'a Natural, rm: RoundingMode) -> $f {
                if *value == 0 {
                    0.0
                } else {
                    let (mantissa, exponent) = value
                        .sci_mantissa_and_exponent_with_rounding(rm)
                        .expect("Value cannot be represented exactly as a float");
                    if let Some(f) =
                        $f::from_sci_mantissa_and_exponent(mantissa, i64::exact_from(exponent))
                    {
                        f
                    } else {
                        match rm {
                            RoundingMode::Exact => {
                                panic!("Value cannot be represented exactly as an {}", $f::NAME)
                            }
                            RoundingMode::Floor | RoundingMode::Down | RoundingMode::Nearest => {
                                $f::MAX_FINITE
                            }
                            _ => $f::POSITIVE_INFINITY,
                        }
                    }
                }
            }
        }

        impl<'a> From<&'a Natural> for $f {
            /// Converts a [`Natural`] to a primitive float.
            ///
            /// If there are two nearest floats, the one whose least-significant bit is zero is
            /// chosen. If the [`Natural`] is larger than the maximum finite float, then the result
            /// is the maximum finite float.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `value.significant_bits()`.
            ///
            /// # Examples
            /// See [here](super::primitive_float_from_natural#from).
            #[inline]
            fn from(value: &'a Natural) -> $f {
                $f::rounding_from(value, RoundingMode::Nearest)
            }
        }

        impl<'a> CheckedFrom<&'a Natural> for $f {
            /// Converts a [`Natural`] to a primitive float.
            ///
            /// If the input isn't exactly equal to some float, `None` is returned.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `value.significant_bits()`.
            ///
            /// # Examples
            /// See [here](super::primitive_float_from_natural#checked_from).
            fn checked_from(value: &'a Natural) -> Option<$f> {
                if *value == 0 {
                    Some(0.0)
                } else {
                    let (mantissa, exponent) =
                        value.sci_mantissa_and_exponent_with_rounding(RoundingMode::Exact)?;
                    $f::from_sci_mantissa_and_exponent(mantissa, i64::exact_from(exponent))
                }
            }
        }

        impl<'a> ConvertibleFrom<&'a Natural> for $f {
            /// Determines whether a [`Natural`] can be exactly converted to a primitive float.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `value.significant_bits()`.
            ///
            /// # Examples
            /// See [here](super::primitive_float_from_natural#convertible_from).
            fn convertible_from(value: &'a Natural) -> bool {
                if *value == 0 {
                    true
                } else {
                    if let Some((mantissa, exponent)) =
                        value.sci_mantissa_and_exponent_with_rounding::<$f>(RoundingMode::Exact)
                    {
                        let exponent = i64::exact_from(exponent);
                        if !($f::MIN_EXPONENT..=$f::MAX_EXPONENT).contains(&exponent) {
                            return false;
                        }
                        let (orig_mantissa, orig_exponent) = mantissa.raw_mantissa_and_exponent();
                        orig_exponent == u64::wrapping_from($f::MAX_EXPONENT)
                            && exponent >= $f::MIN_NORMAL_EXPONENT
                            || orig_mantissa.divisible_by_power_of_2(u64::wrapping_from(
                                $f::MIN_NORMAL_EXPONENT - exponent,
                            ))
                    } else {
                        false
                    }
                }
            }
        }
    };
}
apply_to_primitive_floats!(float_impls);