1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::Float;
use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use core::cmp::Ordering::*;
use malachite_base::num::basic::floats::PrimitiveFloat;
use malachite_nz::natural::Natural;

fn float_partial_eq_primitive_float<T: PrimitiveFloat>(x: &Float, y: &T) -> bool {
    match x {
        float_nan!() => false,
        float_infinity!() => *y == T::INFINITY,
        float_negative_infinity!() => *y == T::NEGATIVE_INFINITY,
        float_either_zero!() => *y == T::ZERO,
        Float(Finite {
            sign,
            exponent,
            significand,
            ..
        }) => {
            y.is_finite()
                && *y != T::ZERO
                && *sign == (*y > T::ZERO)
                && *exponent - 1 == y.sci_exponent()
                && significand.cmp_normalized(&Natural::from(y.integer_mantissa())) == Equal
        }
    }
}

macro_rules! impl_partial_eq_primitive_float {
    ($t: ident) => {
        impl PartialEq<$t> for Float {
            /// Determines whether a [`Float`] is equal to a primitive float.
            ///
            /// The [`Float`] infinity is equal to the primitive float infinity, and the [`Float`]
            /// negative infinity is equal to the primitive float negative infinity. The [`Float`]
            /// NaN is not equal to anything, not even the primitive float NaN. Every [`Float`] zero
            /// is equal to every primitive float zero, regardless of sign.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is
            /// `max(self.significant_bits(), other.sci_exponent().abs())`.
            ///
            /// # Examples
            /// See [here](super::partial_eq_primitive_float#partial_eq).
            #[inline]
            fn eq(&self, other: &$t) -> bool {
                float_partial_eq_primitive_float(self, other)
            }
        }

        impl PartialEq<Float> for $t {
            /// Determines whether a primitive float is equal to a [`Float`].
            ///
            /// The primitive float infinity is equal to the [`Float`] infinity, and the primitive
            /// float negative infinity is equal to the [`Float`] negative infinity. The primitive
            /// float NaN is not equal to anything, not even the [`Float`] NaN. Every primitive
            /// float zero is equal to every [`Float`] zero, regardless of sign.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is
            /// `max(self.significant_bits(), other.sci_exponent().abs())`.
            ///
            /// # Examples
            /// See [here](super::partial_eq_primitive_float#partial_eq).
            #[inline]
            fn eq(&self, other: &Float) -> bool {
                other == self
            }
        }
    };
}
apply_to_primitive_floats!(impl_partial_eq_primitive_float);