1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use crate::{significand_bits, Float};
use core::cmp::Ordering::{self, *};
use malachite_base::num::arithmetic::traits::Sign;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_q::Rational;

pub fn float_partial_cmp_rational_alt(x: &Float, other: &Rational) -> Option<Ordering> {
    match (x, other) {
        (float_nan!(), _) => None,
        (float_infinity!(), _) => Some(Greater),
        (float_negative_infinity!(), _) => Some(Less),
        (float_either_zero!(), y) => 0u32.partial_cmp(y),
        (
            Float(Finite {
                sign: s_x,
                exponent: e_x,
                ..
            }),
            y,
        ) => Some(if *y == 0u32 {
            if *s_x {
                Greater
            } else {
                Less
            }
        } else {
            let s_cmp = s_x.cmp(&(*y > 0));
            if s_cmp != Equal {
                return Some(s_cmp);
            }
            let ord_cmp = (e_x - 1).cmp(&other.floor_log_base_2_abs());
            if ord_cmp == Equal {
                Rational::try_from(x).unwrap().cmp(other)
            } else if *s_x {
                ord_cmp
            } else {
                ord_cmp.reverse()
            }
        }),
    }
}

impl PartialOrd<Rational> for Float {
    /// Compares a [`Float`] to a [`Rational`].
    ///
    /// NaN is not comparable to any [`Rational`]. Infinity is greater than any [`Rational`], and
    /// negative infinity is less. Both the [`Float`] zero and the [`Float`] negative zero are equal
    /// to the [`Rational`] zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
    /// other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
    /// use malachite_float::Float;
    /// use malachite_q::Rational;
    ///
    /// assert!(Float::from(80) < Rational::from(100));
    /// assert!(Float::from(-80) > Rational::from(-100));
    /// assert!(Float::INFINITY > Rational::from(100));
    /// assert!(Float::NEGATIVE_INFINITY < Rational::from(-100));
    /// assert!(Float::from(1.0f64 / 3.0) < Rational::from_unsigneds(1u8, 3));
    /// ```
    fn partial_cmp(&self, other: &Rational) -> Option<Ordering> {
        match (self, other) {
            (float_nan!(), _) => None,
            (float_infinity!(), _) => Some(Greater),
            (float_negative_infinity!(), _) => Some(Less),
            (float_either_zero!(), y) => 0u32.partial_cmp(y),
            (
                Float(Finite {
                    sign: s_x,
                    exponent: e_x,
                    significand: significand_x,
                    ..
                }),
                y,
            ) => Some(if *y == 0u32 {
                if *s_x {
                    Greater
                } else {
                    Less
                }
            } else {
                let s_cmp = s_x.cmp(&(*y > 0));
                if s_cmp != Equal {
                    return Some(s_cmp);
                }
                let ord_cmp = (e_x - 1).cmp(&other.floor_log_base_2_abs());
                if ord_cmp == Equal {
                    let shift = e_x - i64::exact_from(significand_bits(significand_x));
                    let abs_shift = shift.unsigned_abs();
                    let prod_cmp = match shift.sign() {
                        Equal => {
                            (significand_x * other.denominator_ref()).cmp(other.numerator_ref())
                        }
                        Greater => ((significand_x * other.denominator_ref()) << abs_shift)
                            .cmp(other.numerator_ref()),
                        Less => {
                            let n_trailing_zeros = significand_x.trailing_zeros().unwrap();
                            if abs_shift <= n_trailing_zeros {
                                ((significand_x >> abs_shift) * other.denominator_ref())
                                    .cmp(other.numerator_ref())
                            } else {
                                ((significand_x >> n_trailing_zeros) * other.denominator_ref())
                                    .cmp(&(other.numerator_ref() << (abs_shift - n_trailing_zeros)))
                            }
                        }
                    };
                    if *s_x {
                        prod_cmp
                    } else {
                        prod_cmp.reverse()
                    }
                } else if *s_x {
                    ord_cmp
                } else {
                    ord_cmp.reverse()
                }
            }),
        }
    }
}

impl PartialOrd<Float> for Rational {
    /// Compares an [`Rational`] to a [`Float`].
    ///
    /// No [`Rational`] is comparable to NaN. Every [`Rational`] is smaller than infinity and
    /// greater than negative infinity. The [`Rational`] zero is equal to both the [`Float`] zero
    /// and the [`Float`] negative zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
    /// other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
    /// use malachite_float::Float;
    /// use malachite_q::Rational;
    ///
    /// assert!(Rational::from(100) > Float::from(80));
    /// assert!(Rational::from(-100) < Float::from(-80));
    /// assert!(Rational::from(100) < Float::INFINITY);
    /// assert!(Rational::from(-100) > Float::NEGATIVE_INFINITY);
    /// assert!(Rational::from_unsigneds(1u8, 3) > Float::from(1.0f64 / 3.0));
    /// ```
    #[inline]
    fn partial_cmp(&self, other: &Float) -> Option<Ordering> {
        other.partial_cmp(self).map(Ordering::reverse)
    }
}