malachite_float/basic/complexity.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::Float;
10use crate::InnerFloat::Finite;
11use core::cmp::max;
12use malachite_base::num::logic::traits::SignificantBits;
13
14impl Float {
15 /// Determines a [`Float`]'s complexity. The complexity is defined as follows:
16 ///
17 /// $$
18 /// f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = 1,
19 /// $$
20 ///
21 /// and, if $x$ is finite and nonzero,
22 ///
23 /// $$
24 /// f(x) = \max(|\lfloor \log_2 x\rfloor|, p),
25 /// $$
26 ///
27 /// where $p$ is the precision of $x$.
28 ///
29 /// Informally, the complexity is proportional to the number of characters you would need to
30 /// write the [`Float`] out without using exponents.
31 ///
32 /// See also the [`Float`] implementation of [`SignificantBits`].
33 ///
34 /// # Worst-case complexity
35 /// Constant time and additional memory.
36 ///
37 /// # Examples
38 /// ```
39 /// use malachite_base::num::arithmetic::traits::PowerOf2;
40 /// use malachite_base::num::basic::traits::{NaN, One};
41 /// use malachite_float::Float;
42 ///
43 /// assert_eq!(Float::NAN.complexity(), 1);
44 /// assert_eq!(Float::ONE.complexity(), 1);
45 /// assert_eq!(Float::one_prec(100).complexity(), 100);
46 /// assert_eq!(Float::from(std::f64::consts::PI).complexity(), 50);
47 /// assert_eq!(Float::power_of_2(100u64).complexity(), 100);
48 /// assert_eq!(Float::power_of_2(-100i64).complexity(), 100);
49 /// ```
50 pub fn complexity(&self) -> u64 {
51 match self {
52 Float(Finite {
53 exponent,
54 precision,
55 ..
56 }) => max(u64::from((exponent - 1).unsigned_abs()), *precision),
57 _ => 1,
58 }
59 }
60}
61
62impl SignificantBits for &Float {
63 /// Returns the number of significant bits of a [`Float`]. This is defined as follows:
64 ///
65 /// $$
66 /// f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = 1,
67 /// $$
68 ///
69 /// and, if $x$ is finite and nonzero,
70 ///
71 /// $$
72 /// f(x) = p,
73 /// $$
74 ///
75 /// where $p$ is the precision of $x$.
76 ///
77 /// See also the [`complexity`](Float::complexity) function.
78 ///
79 /// # Worst-case complexity
80 /// Constant time and additional memory.
81 ///
82 /// # Examples
83 /// ```
84 /// use malachite_base::num::arithmetic::traits::PowerOf2;
85 /// use malachite_base::num::basic::traits::{NaN, One};
86 /// use malachite_base::num::logic::traits::SignificantBits;
87 /// use malachite_float::Float;
88 ///
89 /// assert_eq!(Float::NAN.significant_bits(), 1);
90 /// assert_eq!(Float::ONE.significant_bits(), 1);
91 /// assert_eq!(Float::one_prec(100).significant_bits(), 100);
92 /// assert_eq!(Float::from(std::f64::consts::PI).significant_bits(), 50);
93 /// assert_eq!(Float::power_of_2(100u64).significant_bits(), 1);
94 /// assert_eq!(Float::power_of_2(-100i64).significant_bits(), 1);
95 /// ```
96 fn significant_bits(self) -> u64 {
97 match self {
98 Float(Finite { precision, .. }) => *precision,
99 _ => 1,
100 }
101 }
102}