1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use crate::named::Named;
use alloc::string::String;
use alloc::vec::Vec;
use core::fmt::{Binary, Debug, LowerHex, Octal, UpperHex};
use hashbrown::HashSet;
use itertools::Itertools;

/// Sorts the characters of a string slice and returns them in a new [`String`].
///
/// # Worst-case complexity
/// $T(n) = O(n \log n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `s.len()`.
///
/// # Examples
/// ```
/// use malachite_base::strings::string_sort;
///
/// assert_eq!(string_sort("Hello, world!"), " !,Hdellloorw");
/// assert_eq!(string_sort("Mississippi"), "Miiiippssss");
/// ```
pub fn string_sort(s: &str) -> String {
    let mut chars = s.chars().collect_vec();
    chars.sort_unstable();
    chars.iter().collect()
}

/// Takes a string slice's unique characters and returns them in a new [`String`].
///
/// The unique characters are output in order of appearance.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `s.len()`.
///
/// # Examples
/// ```
/// use malachite_base::strings::string_unique;
///
/// assert_eq!(string_unique("Hello, world!"), "Helo, wrd!");
/// assert_eq!(string_unique("Mississippi"), "Misp");
/// ```
pub fn string_unique(s: &str) -> String {
    let mut chars = HashSet::new();
    let mut nub = String::new();
    for c in s.chars() {
        if chars.insert(c) {
            nub.push(c);
        }
    }
    nub
}

/// Returns whether all of the first string slice's characters are present in the second string
/// slice.
///
/// Does not take multiplicities into account.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n + m)$
///
/// where $T$ is time, $M$ is additional memory, $n$ is `s.len()`, and $m$ is `t.len()`.
///
/// # Examples
/// ```
/// use malachite_base::strings::string_is_subset;
///
/// assert_eq!(string_is_subset("oH, well", "Hello, world!"), true);
/// assert_eq!(string_is_subset("MMM", "Mississippi"), true);
/// assert_eq!(string_is_subset("Hello, World!", "Hello, world!"), false);
/// assert_eq!(string_is_subset("j", "Mississippi"), false);
/// ```
pub fn string_is_subset(s: &str, t: &str) -> bool {
    let t_chars: HashSet<char> = t.chars().collect();
    s.chars().all(|c| t_chars.contains(&c))
}

impl_named!(String);

/// A trait that provides an ergonomic way to create the string specified by a [`Debug`]
/// implementation.
pub trait ToDebugString: Debug {
    fn to_debug_string(&self) -> String;
}

impl<T: Debug> ToDebugString for T {
    /// Returns the [`String`] produced by `T`s [`Debug`] implementation.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::strings::ToDebugString;
    ///
    /// assert_eq!([1, 2, 3].to_debug_string(), "[1, 2, 3]");
    /// assert_eq!(
    ///     [vec![2, 3], vec![], vec![4]].to_debug_string(),
    ///     "[[2, 3], [], [4]]"
    /// );
    /// assert_eq!(Some(5).to_debug_string(), "Some(5)");
    /// ```
    #[inline]
    fn to_debug_string(&self) -> String {
        ::alloc::format!("{self:?}")
    }
}

/// A trait that provides an ergonomic way to create the string specified by a [`Binary`]
/// implementation.
pub trait ToBinaryString: Binary {
    fn to_binary_string(&self) -> String;
}

impl<T: Binary> ToBinaryString for T {
    /// Returns the [`String`] produced by `T`s [`Binary`] implementation.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::strings::ToBinaryString;
    ///
    /// assert_eq!(5u64.to_binary_string(), "101");
    /// assert_eq!((-100i16).to_binary_string(), "1111111110011100");
    /// ```
    #[inline]
    fn to_binary_string(&self) -> String {
        ::alloc::format!("{self:b}")
    }
}

/// A trait that provides an ergonomic way to create the string specified by an [`Octal`]
/// implementation.
pub trait ToOctalString: Octal {
    fn to_octal_string(&self) -> String;
}

impl<T: Octal> ToOctalString for T {
    /// Returns the [`String`] produced by `T`s [`Octal`] implementation.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::strings::ToOctalString;
    ///
    /// assert_eq!(50u64.to_octal_string(), "62");
    /// assert_eq!((-100i16).to_octal_string(), "177634");
    /// ```
    #[inline]
    fn to_octal_string(&self) -> String {
        ::alloc::format!("{self:o}")
    }
}

/// A trait that provides an ergonomic way to create the string specified by a [`LowerHex`]
/// implementation.
pub trait ToLowerHexString: LowerHex {
    fn to_lower_hex_string(&self) -> String;
}

impl<T: LowerHex> ToLowerHexString for T {
    /// Returns the [`String`] produced by `T`s [`LowerHex`] implementation.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::strings::ToLowerHexString;
    ///
    /// assert_eq!(50u64.to_lower_hex_string(), "32");
    /// assert_eq!((-100i16).to_lower_hex_string(), "ff9c");
    /// ```
    #[inline]
    fn to_lower_hex_string(&self) -> String {
        ::alloc::format!("{self:x}")
    }
}

/// A trait that provides an ergonomic way to create the string specified by an [`UpperHex`]
/// implementation.
pub trait ToUpperHexString: UpperHex {
    fn to_upper_hex_string(&self) -> String;
}

impl<T: UpperHex> ToUpperHexString for T {
    /// Returns the [`String`] produced by `T`s [`UpperHex`] implementation.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::strings::ToUpperHexString;
    ///
    /// assert_eq!(50u64.to_upper_hex_string(), "32");
    /// assert_eq!((-100i16).to_upper_hex_string(), "FF9C");
    /// ```
    #[inline]
    fn to_upper_hex_string(&self) -> String {
        ::alloc::format!("{self:X}")
    }
}

/// Generates [`String`]s, given an iterator that generates `Vec<char>`s.
///
/// This `struct` is created by [`strings_from_char_vecs`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct StringsFromCharVecs<I: Iterator<Item = Vec<char>>> {
    css: I,
}

impl<I: Iterator<Item = Vec<char>>> Iterator for StringsFromCharVecs<I> {
    type Item = String;

    #[inline]
    fn next(&mut self) -> Option<String> {
        self.css.next().map(|cs| cs.into_iter().collect())
    }
}

/// Generates [`String`]s, given an iterator that generates `Vec<char>`s.
///
/// The elements appear in the same order as they do in the given iterator, but as [`String`]s.
///
/// The output length is `css.count()`.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::strings::strings_from_char_vecs;
///
/// let ss =
///     &strings_from_char_vecs([vec!['a', 'b'], vec!['c', 'd']].iter().cloned()).collect_vec();
/// assert_eq!(
///     ss.iter().map(|cs| cs.as_str()).collect_vec().as_slice(),
///     &["ab", "cd"]
/// );
/// ```
#[inline]
pub const fn strings_from_char_vecs<I: Iterator<Item = Vec<char>>>(
    css: I,
) -> StringsFromCharVecs<I> {
    StringsFromCharVecs { css }
}

/// Iterators that generate [`String`]s without repetition.
pub mod exhaustive;
#[cfg(feature = "random")]
/// Iterators that generate [`String`]s randomly.
pub mod random;