1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
use std::fmt;

use rb_sys::VALUE;

use crate::{
    error::Error,
    into_value::IntoValue,
    object::Object,
    try_convert::TryConvert,
    value::{
        private::{self, ReprValue as _},
        NonZeroValue, ReprValue, Value,
    },
    Ruby,
};

/// Wrapper type for a Value known to be an instance of Ruby's Enumerator class.
///
/// `Enumerator` implements [`Iterator`], however Rust's iterators are a pull
/// based model, whereas Ruby's enumerators are a push based model. Bridging
/// these two models incurs a performance penalty, so `Enumerator` may not be
/// the most performant way of iterating a collection.
///
/// See the [`ReprValue`] and [`Object`] traits for additional methods
/// available on this type.
///
/// # Examples
///
/// ```
/// use magnus::{prelude::*, rb_assert, RArray, RString};
/// # let _cleanup = unsafe { magnus::embed::init() };
///
/// let s = RString::new("foo\nbar\nbaz");
/// let results = RArray::new();
///
/// // `enumeratorize` returns `Enumerator`
/// for line in s.enumeratorize("each_line", ()) {
///     results.push(line.unwrap()).unwrap();
/// }
/// rb_assert!(r#"results == ["foo\n", "bar\n", "baz"]"#, results);
/// ```
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Enumerator(NonZeroValue);

impl Enumerator {
    /// Return `Some(Enumerator)` if `val` is an `Enumerator`, `None` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// use magnus::{eval, Enumerator};
    /// # let _cleanup = unsafe { magnus::embed::init() };
    ///
    /// assert!(Enumerator::from_value(eval("[1, 2, 3].each").unwrap()).is_some());
    /// assert!(Enumerator::from_value(eval("[1, 2, 3]").unwrap()).is_none());
    /// ```
    #[inline]
    pub fn from_value(val: Value) -> Option<Self> {
        unsafe {
            val.is_kind_of(Ruby::get_with(val).class_enumerator())
                .then(|| Self(NonZeroValue::new_unchecked(val)))
        }
    }

    #[inline]
    pub(crate) unsafe fn from_rb_value_unchecked(val: VALUE) -> Self {
        Self(NonZeroValue::new_unchecked(Value::new(val)))
    }
}

impl Iterator for Enumerator {
    type Item = Result<Value, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.funcall("next", ()) {
            Ok(v) => Some(Ok(v)),
            Err(e) if e.is_kind_of(Ruby::get_with(*self).exception_stop_iteration()) => None,
            Err(e) => Some(Err(e)),
        }
    }
}

impl fmt::Display for Enumerator {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", unsafe { self.to_s_infallible() })
    }
}

impl fmt::Debug for Enumerator {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", ReprValue::inspect(*self))
    }
}

impl IntoValue for Enumerator {
    #[inline]
    fn into_value_with(self, _: &Ruby) -> Value {
        self.0.get()
    }
}

impl Object for Enumerator {}

unsafe impl private::ReprValue for Enumerator {}

impl ReprValue for Enumerator {}

impl TryConvert for Enumerator {
    fn try_convert(val: Value) -> Result<Self, Error> {
        Self::from_value(val).ok_or_else(|| {
            Error::new(
                Ruby::get_with(val).exception_type_error(),
                format!("no implicit conversion of {} into Enumerator", unsafe {
                    val.classname()
                },),
            )
        })
    }
}