1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// timepriv.rs
//
// Copyright (C) 2019-2021  Minnesota Department of Transportation
// Copyright (C) 2019-2022  Douglas P Lau
//
//! Private module for time structs
//!
extern crate alloc;

use crate::{length, time::Unit, Length, Speed};
use core::fmt;
use core::marker::PhantomData;
use core::ops::{Add, Div, Mul, Sub};

/// _Period_, _duration_ or _interval_ of time.
///
/// Period is a base quantity with a specific [unit].
///
/// ## Operations
///
/// * f64 `*` [unit] `=>` Period
/// * i32 `*` [unit] `=>` Period
/// * Period `+` Period `=>` Period
/// * Period `-` Period `=>` Period
/// * Period `*` f64 `=>` Period
/// * f64 `*` Period `=>` Period
/// * f64 `/` Period `=>` [Frequency]
///
/// Units must be the same for operations with two Period operands.  The [to]
/// method can be used for conversion.
///
/// ```rust
/// use mag::time::{min, s};
///
/// let a = 15 * min;
/// let b = 90.0 * s;
///
/// assert_eq!(a.to_string(), "15 min");
/// assert_eq!((a + b.to()).to_string(), "16.5 min");
/// ```
/// [Frequency]: struct.Frequency.html
/// [unit]: time/index.html
/// [to]: struct.Period.html#method.to
///
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct Period<U>
where
    U: Unit,
{
    /// Period quantity
    pub quantity: f64,

    /// Measurement unit
    unit: PhantomData<U>,
}

/// Temporal _frequency_, or _rate_ over time.
///
/// Frequency is a derived quantity with a specific [unit].
///
/// ## Operations
///
/// * f64 `/` [unit] `=>` Frequency
/// * i32 `/` [unit] `=>` Frequency
/// * Frequency `+` Frequency `=>` Frequency
/// * Frequency `-` Frequency `=>` Frequency
/// * Frequency `*` f64 `=>` Frequency
/// * f64 `*` Frequency `=>` Frequency
/// * f64 `/` [Period] `=>` Frequency
/// * f64 `/` Frequency `=>` [Period]
///
/// Units must be the same for operations with two Frequency operands.  The
/// [to] method can be used for conversion.
///
/// ```rust
/// use mag::time::{ns, s};
///
/// let a = 25.0 / s;
/// let b = 500.0 / ns;
///
/// assert_eq!(a.to_string(), "25 ㎐");
/// assert_eq!(b.to_string(), "500 ㎓");
/// ```
/// [Period]: struct.Period.html
/// [unit]: time/index.html
/// [to]: struct.Frequency.html#method.to
///
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct Frequency<U>
where
    U: Unit,
{
    /// Frequency quantity
    pub quantity: f64,

    /// Measurement unit
    unit: PhantomData<U>,
}

impl_base_ops!(Period, Unit);
impl_base_ops!(Frequency, Unit);

impl<U> fmt::Display for Period<U>
where
    U: Unit,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.quantity.fmt(f)?;
        write!(f, " {}", U::LABEL)
    }
}

impl<U> fmt::Display for Frequency<U>
where
    U: Unit,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.quantity.fmt(f)?;
        write!(f, " {}", U::INVERSE)
    }
}

impl<U> Period<U>
where
    U: Unit,
{
    /// Create a new period quantity
    pub fn new(quantity: f64) -> Self {
        Period::<U> {
            quantity,
            unit: PhantomData,
        }
    }

    /// Convert to specified units
    pub fn to<T: Unit>(self) -> Period<T> {
        let quantity = self.quantity * U::factor::<T>();
        Period::new(quantity)
    }
}

// f64 / Period => Frequency
impl<U> Div<Period<U>> for f64
where
    U: Unit,
{
    type Output = Frequency<U>;
    fn div(self, other: Period<U>) -> Self::Output {
        Self::Output::new(self / other.quantity)
    }
}

// Length / Period => Speed
impl<L, T> Div<Period<T>> for Length<L>
where
    L: length::Unit,
    T: Unit,
{
    type Output = Speed<L, T>;
    fn div(self, per: Period<T>) -> Self::Output {
        Speed::new(self.quantity / per.quantity)
    }
}

impl<U> Frequency<U>
where
    U: Unit,
{
    /// Create a new frequency quantity
    pub fn new(quantity: f64) -> Self {
        Frequency::<U> {
            quantity,
            unit: PhantomData,
        }
    }

    /// Convert to specified units
    pub fn to<T: Unit>(self) -> Frequency<T> {
        let quantity = self.quantity / U::factor::<T>();
        Frequency::new(quantity)
    }
}

// f64 / Frequency => Period
impl<U> Div<Frequency<U>> for f64
where
    U: Unit,
{
    type Output = Period<U>;
    fn div(self, other: Frequency<U>) -> Self::Output {
        Self::Output::new(self / other.quantity)
    }
}

// Frequency * Length => Speed
impl<L, T> Mul<Length<L>> for Frequency<T>
where
    L: length::Unit,
    T: Unit,
{
    type Output = Speed<L, T>;
    fn mul(self, len: Length<L>) -> Self::Output {
        Speed::new(self.quantity * len.quantity)
    }
}

// Length * Frequency => Speed
impl<L, T> Mul<Frequency<T>> for Length<L>
where
    L: length::Unit,
    T: Unit,
{
    type Output = Speed<L, T>;
    fn mul(self, freq: Frequency<T>) -> Self::Output {
        Speed::new(self.quantity * freq.quantity)
    }
}