1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
//! A deterministic simulator for distributed systems.
//!
//! ## Features
//!
//! - `rpc`: Enables RPC through network.
//! - `logger`: Enables built-in logger.
//! - `macros`: Enables `#[madsim::main]` and `#[madsim::test]` macros.

#![deny(missing_docs)]

use std::{future::Future, net::SocketAddr, time::Duration};

mod context;
pub mod fs;
pub mod net;
pub mod rand;
pub mod task;
pub mod time;

#[cfg(feature = "macros")]
pub use madsim_macros::{main, test};

/// The madsim runtime.
///
/// The runtime provides basic components for deterministic simulation,
/// including a [random number generator], [timer], [task scheduler], and
/// simulated [network] and [file system].
///
/// [random number generator]: crate::rand
/// [timer]: crate::time
/// [task scheduler]: crate::task
/// [network]: crate::net
/// [file system]: crate::fs
pub struct Runtime {
    rand: rand::RandHandle,
    task: task::Executor,
    net: net::NetRuntime,
    fs: fs::FsRuntime,
}

impl Default for Runtime {
    fn default() -> Self {
        Self::new()
    }
}

impl Runtime {
    /// Create a new runtime instance.
    pub fn new() -> Self {
        Self::new_with_seed(0)
    }

    /// Create a new runtime instance with given seed.
    pub fn new_with_seed(seed: u64) -> Self {
        #[cfg(feature = "logger")]
        crate::init_logger();

        let rand = rand::RandHandle::new_with_seed(seed);
        let task = task::Executor::new();
        let net = net::NetRuntime::new(rand.clone(), task.time_handle().clone());
        let fs = fs::FsRuntime::new(rand.clone(), task.time_handle().clone());
        Runtime {
            rand,
            task,
            net,
            fs,
        }
    }

    /// Return a handle to the runtime.
    ///
    /// The returned handle can be used by the supervisor (future in [block_on])
    /// to control the whole system. For example, kill a host or disconnect the
    /// network.
    ///
    /// [block_on]: Runtime::block_on
    pub fn handle(&self) -> Handle {
        Handle {
            rand: self.rand.clone(),
            time: self.task.time_handle().clone(),
            task: self.task.handle().clone(),
            net: self.net.handle().clone(),
            fs: self.fs.handle().clone(),
        }
    }

    /// Return a handle of the specified host.
    ///
    /// The returned handle can be used to spawn tasks that run on this host.
    pub fn local_handle(&self, addr: SocketAddr) -> LocalHandle {
        assert_ne!(addr, SocketAddr::from(([0, 0, 0, 0], 0)), "invalid address");
        LocalHandle {
            task: self.task.handle().local_handle(addr),
            net: self.net.handle().local_handle(addr),
            fs: self.fs.handle().local_handle(addr),
        }
    }

    /// Run a future to completion on the runtime. This is the runtime’s entry point.
    ///
    /// This runs the given future on the current thread until it is complete.
    ///
    /// # Example
    ///
    /// ```
    /// use madsim::Runtime;
    ///
    /// let rt = Runtime::new();
    /// let ret = rt.block_on(async { 1 });
    /// assert_eq!(ret, 1);
    /// ```
    ///
    /// Unlike usual async runtime, when there is no runnable task, it will
    /// panic instead of blocking.
    ///
    /// ```should_panic
    /// use madsim::Runtime;
    /// use futures::future::pending;
    ///
    /// Runtime::new().block_on(pending::<()>());
    /// ```
    pub fn block_on<F: Future>(&self, future: F) -> F::Output {
        let _guard = crate::context::enter(self.handle());
        self.task.block_on(future)
    }

    /// Set a time limit of the execution.
    ///
    /// The runtime will panic when time limit exceeded.
    ///
    /// # Example
    ///
    /// ```should_panic
    /// use madsim::{Runtime, time::{sleep, Duration}};
    ///
    /// let mut rt = Runtime::new();
    /// rt.set_time_limit(Duration::from_secs(1));
    ///
    /// rt.block_on(async {
    ///     sleep(Duration::from_secs(2)).await;
    /// });
    /// ```
    pub fn set_time_limit(&mut self, limit: Duration) {
        self.task.set_time_limit(limit);
    }

    /// Enable deterministic check during the simulation.
    ///
    /// # Example
    ///
    /// ```should_panic
    /// use madsim::{Runtime, time::{sleep, Duration}};
    /// use rand::Rng;
    ///
    /// let f = || async {
    ///     for _ in 0..10 {
    ///         madsim::rand::rng().gen::<u64>();
    ///         // introduce non-deterministic
    ///         let rand_num = rand::thread_rng().gen_range(0..10);
    ///         sleep(Duration::from_nanos(rand_num)).await;
    ///     }
    /// };
    ///
    /// let mut rt = Runtime::new();
    /// rt.enable_deterministic_check(None);    // enable log
    /// rt.block_on(f());
    /// let log = rt.take_rand_log();           // take log for next turn
    ///
    /// let mut rt = Runtime::new();
    /// rt.enable_deterministic_check(log);     // enable check
    /// rt.block_on(f());                       // run the same logic again,
    ///                                         // should panic here.
    /// ```
    pub fn enable_deterministic_check(&self, log: Option<rand::Log>) {
        assert_eq!(
            self.task.time_handle().elapsed(),
            Duration::default(),
            "deterministic check must be set at init"
        );
        if let Some(log) = log {
            self.rand.enable_check(log);
        } else {
            self.rand.enable_log();
        }
    }

    /// Take random log so that you can check deterministic in the next turn.
    pub fn take_rand_log(self) -> Option<rand::Log> {
        self.rand.take_log()
    }
}

/// Supervisor handle to the runtime.
#[derive(Clone)]
#[allow(missing_docs)]
pub struct Handle {
    rand: rand::RandHandle,
    time: time::TimeHandle,
    task: task::TaskHandle,
    pub net: net::NetHandle,
    pub fs: fs::FsHandle,
}

impl Handle {
    /// Returns a [`Handle`] view over the currently running [`Runtime`].
    ///
    /// ## Panic
    ///
    /// This will panic if called outside the context of a Madsim runtime.
    ///
    /// ```should_panic
    /// let handle = madsim::Handle::current();
    /// ```
    pub fn current() -> Self {
        context::current()
    }

    /// Kill a host.
    ///
    /// - All tasks spawned on this host will be killed immediately.
    /// - All data that has not been flushed to the disk will be lost.
    ///
    /// # Example
    /// ```
    /// use madsim::{Runtime, time::{sleep, Duration}};
    /// use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
    ///
    /// let rt = Runtime::new();
    /// let addr = "0.0.0.1:1".parse().unwrap();
    ///
    /// // host increases the counter every 2s
    /// let flag = Arc::new(AtomicUsize::new(0));
    /// let flag_ = flag.clone();
    /// rt.local_handle(addr).spawn(async move {
    ///     loop {
    ///         sleep(Duration::from_secs(2)).await;
    ///         flag_.fetch_add(2, Ordering::SeqCst);
    ///     }
    /// }).detach();
    ///  
    /// let handle = rt.handle();
    /// rt.block_on(async move {
    ///     sleep(Duration::from_secs(3)).await;
    ///     assert_eq!(flag.load(Ordering::SeqCst), 2);
    ///
    ///     handle.kill(addr);
    ///
    ///     sleep(Duration::from_secs(2)).await;
    ///     assert_eq!(flag.load(Ordering::SeqCst), 2);
    /// });
    /// ```
    pub fn kill(&self, addr: SocketAddr) {
        self.task.kill(addr);
        // self.net.kill(addr);
        // self.fs.power_fail(addr);
    }

    /// Return a handle of the specified host.
    pub fn local_handle(&self, addr: SocketAddr) -> LocalHandle {
        LocalHandle {
            task: self.task.local_handle(addr),
            net: self.net.local_handle(addr),
            fs: self.fs.local_handle(addr),
        }
    }
}

/// Local host handle to the runtime.
#[derive(Clone)]
pub struct LocalHandle {
    task: task::TaskLocalHandle,
    net: net::NetLocalHandle,
    fs: fs::FsLocalHandle,
}

impl LocalHandle {
    /// Spawn a future onto the runtime.
    pub fn spawn<F>(&self, future: F) -> async_task::Task<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        self.task.spawn(future)
    }
}

#[cfg(feature = "logger")]
fn init_logger() {
    use env_logger::fmt::Color;
    use std::io::Write;
    use std::sync::Once;
    static LOGGER_INIT: Once = Once::new();
    LOGGER_INIT.call_once(|| {
        let start = std::env::var("MADSIM_LOG_TIME_START")
            .ok()
            .map(|s| Duration::from_secs_f64(s.parse::<f64>().unwrap()));
        let mut builder = env_logger::Builder::from_default_env();
        builder.format(move |buf, record| {
            let mut style = buf.style();
            style.set_color(Color::Black).set_intense(true);
            let mut level_style = buf.style();
            level_style.set_color(match record.level() {
                log::Level::Error => Color::Red,
                log::Level::Warn => Color::Yellow,
                log::Level::Info => Color::Green,
                log::Level::Debug => Color::Blue,
                log::Level::Trace => Color::Cyan,
            });
            if let Some(time) = crate::context::try_time_handle() {
                if matches!(start, Some(t0) if time.elapsed() < t0) {
                    return write!(buf, "");
                }
                let addr = crate::context::current_addr().unwrap();
                writeln!(
                    buf,
                    "{}{:>5}{}{:.6}s{}{}{}{:>10}{} {}",
                    style.value('['),
                    level_style.value(record.level()),
                    style.value("]["),
                    time.elapsed().as_secs_f64(),
                    style.value("]["),
                    addr,
                    style.value("]["),
                    record.target(),
                    style.value(']'),
                    record.args()
                )
            } else {
                writeln!(
                    buf,
                    "{}{:>5}{}{:>10}{} {}",
                    style.value('['),
                    level_style.value(record.level()),
                    style.value("]["),
                    record.target(),
                    style.value(']'),
                    record.args()
                )
            }
        });
        builder.init();
    });
}